.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/experiment_custom_lisn.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_auto_examples_experiment_custom_lisn.py>` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_experiment_custom_lisn.py: Implementing and running a custom Experiment on a dataset ========================================================== This notebook demonstrates implementing a custom experiment to search for hyperparameters and saving the scores of the experiment for a specified set of parameters for `lisn` dataset. We will inherit a new Experiment class from `cartodata.model_selection.experiment.BaseExperiment` class. First we will define necessary global variables. .. GENERATED FROM PYTHON SOURCE LINES 11-28 .. code-block:: Python from pathlib import Path # noqa ROOT_DIR = Path.cwd().parent SOURCE = "authors" NATURE = "articles" # The directory where the artifacts of the experiment will be saved TOP_DIR = ROOT_DIR / "experiment_custom" # The directory where dataset.yaml files reside CONF_DIR = ROOT_DIR / "conf" # The directory where files necessary to load dataset columns reside INPUT_DIR = ROOT_DIR / "datas" TOP_DIR .. rst-class:: sphx-glr-script-out .. code-block:: none PosixPath('/builds/2mk6rsew/0/hgozukan/cartolabe-data/experiment_custom') .. GENERATED FROM PYTHON SOURCE LINES 29-33 Initialize Parameter Iterator ----------------------------- We will initilialize a parameter iterator to iterate through our parameters. We have two options `GridIterator` and `RandomIterator`. .. GENERATED FROM PYTHON SOURCE LINES 33-41 .. code-block:: Python from cartodata.model_selection.iterator import GridIterator, RandomIterator # noqa help(GridIterator) "" help(RandomIterator) .. rst-class:: sphx-glr-script-out .. code-block:: none Help on class GridIterator in module cartodata.model_selection.iterator: class GridIterator(ParameterIteratorBase) | GridIterator(df=None, csv_filepath=None, params_dict=None, index_col=0) | | A parameter iterator class that iterates through a given set of | parameters in order. | | Method resolution order: | GridIterator | ParameterIteratorBase | builtins.object | | Methods defined here: | | __init__(self, df=None, csv_filepath=None, params_dict=None, index_col=0) | Initializes the params_frame either by the specified ``df``, from the | specified ``csv_filepath`` or the ``params_dict``. | | Parameters | ---------- | df: pandas.DataFrame | the dataframe that contains the list of parameter sets. | csv_filepath: str, Path | the path of the .csv file that contains the list of parameter sets. | params_dict: dict | dictionary of possible parameters specified as key: list pairs. | index_col: int | index column if a csv_filepath is specified. | | ---------------------------------------------------------------------- | Methods inherited from ParameterIteratorBase: | | has_next(self) | Checks if there is a set of parameters that is that used yet. | | Returns | ------- | bool | True if there still is a set of parameters that is not used yet; | False otherwise. | | head(self, n=10) | Views top `n` entries in the `params_frame.` | | Parameters | ---------- | n: int | the number of rows to view. | | next(self) | Returns the next set of values as dictionary. | | Removes ``selected`` column before returning. | | Example set of values: | { | "id": 7b5e167fb3242dacae5c, | "robustseed" : 0, | "dataset" : "lisn", | "min_df" : 10, | "max_df" : 0.5, | "max_words" : "None", | "vocab_sample" : "None", | "filter_min_score" : 3, | "projectionnD" : "lsa", | "num_dim" : 50, | "projection2D": "umap", | "n_neighbors": 15, | "min_dist": 0.1, | "metric": "euclidean", | "clustering" : "kmeans", | "base_factor" : 3, | "weight_name_length" : 0, | } | | set_initial_executed(self) | Check params_frame for the rows that are already run and sets | `nb_initial_executed` so that these row are not considered for `nbmax` | value specified for `stop` function. | | stop(self, nbmax=None) | Checks if stopping condition is satisfied. If the experiment is run | `nbmax` times or there are no other set of parameters to test, stopping | condition is satisfied. | | Parameters | ---------- | nbmax: int, default=None | maximum number of experiments to run. | | Returns | ------- | bool | True if stopping condition is satisfied; False otherwise. | | to_csv(self, filepath) | Persists `params_frame` to the specified `filepath`. | | Parameters | ---------- | filepath: str, Path | the path to save the contents of params_frame. | | transform(self, x) | | ---------------------------------------------------------------------- | Readonly properties inherited from ParameterIteratorBase: | | columns | Returns the column names of `params_frame`. | | ---------------------------------------------------------------------- | Data descriptors inherited from ParameterIteratorBase: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) Help on class RandomIterator in module cartodata.model_selection.iterator: class RandomIterator(ParameterIteratorBase) | RandomIterator(df=None, csv_filepath=None, params_dict=None, index_col=0, seed=None) | | A parameter iterator class that iterates through a given set of | parameters by random selections. | | Method resolution order: | RandomIterator | ParameterIteratorBase | builtins.object | | Methods defined here: | | __init__(self, df=None, csv_filepath=None, params_dict=None, index_col=0, seed=None) | Initializes the params_frame either by the specified ``df``, from the | specified ``csv_filepath`` or the ``params_dict``. | | Parameters | ---------- | df: pandas.DataFrame | the dataframe that contains the list of parameter sets. | csv_filepath: str, Path | the path of the .csv file that contains the list of parameter sets. | params_dict: dict | dictionary of possible parameters specified as key: list pairs. | index_col: int | index column if a csv_filepath is specified. | seed: int | seed for random generator | | ---------------------------------------------------------------------- | Methods inherited from ParameterIteratorBase: | | has_next(self) | Checks if there is a set of parameters that is that used yet. | | Returns | ------- | bool | True if there still is a set of parameters that is not used yet; | False otherwise. | | head(self, n=10) | Views top `n` entries in the `params_frame.` | | Parameters | ---------- | n: int | the number of rows to view. | | next(self) | Returns the next set of values as dictionary. | | Removes ``selected`` column before returning. | | Example set of values: | { | "id": 7b5e167fb3242dacae5c, | "robustseed" : 0, | "dataset" : "lisn", | "min_df" : 10, | "max_df" : 0.5, | "max_words" : "None", | "vocab_sample" : "None", | "filter_min_score" : 3, | "projectionnD" : "lsa", | "num_dim" : 50, | "projection2D": "umap", | "n_neighbors": 15, | "min_dist": 0.1, | "metric": "euclidean", | "clustering" : "kmeans", | "base_factor" : 3, | "weight_name_length" : 0, | } | | set_initial_executed(self) | Check params_frame for the rows that are already run and sets | `nb_initial_executed` so that these row are not considered for `nbmax` | value specified for `stop` function. | | stop(self, nbmax=None) | Checks if stopping condition is satisfied. If the experiment is run | `nbmax` times or there are no other set of parameters to test, stopping | condition is satisfied. | | Parameters | ---------- | nbmax: int, default=None | maximum number of experiments to run. | | Returns | ------- | bool | True if stopping condition is satisfied; False otherwise. | | to_csv(self, filepath) | Persists `params_frame` to the specified `filepath`. | | Parameters | ---------- | filepath: str, Path | the path to save the contents of params_frame. | | transform(self, x) | | ---------------------------------------------------------------------- | Readonly properties inherited from ParameterIteratorBase: | | columns | Returns the column names of `params_frame`. | | ---------------------------------------------------------------------- | Data descriptors inherited from ParameterIteratorBase: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) .. GENERATED FROM PYTHON SOURCE LINES 42-43 We define the set of parameters that we want to test. .. GENERATED FROM PYTHON SOURCE LINES 43-60 .. code-block:: Python from cartodata.phases import PhaseProjectionND, PhaseProjection2D, PhaseClustering params = { "robustseed" : [0], "authors__filter_min_score": [4], "filter_min_score": [6], PhaseProjectionND.NAME : [ { "key": ["lsa"], "num_dims": [50, 100], "extra_param": [True, False]}, { "key": ["bert"], "family": ["all-MiniLM-L6-v2"]} ], PhaseProjection2D.NAME : [ { "key": ["umap"], "n_neighbors" : [10, 20, 50], "min_dist" : [0.1, 0.25, 0.5], "metric" : ["euclidean"] } ] } .. GENERATED FROM PYTHON SOURCE LINES 61-64 The `params` dictionary contains the parameters that will be used for generating matrices, projections, etc. For this experiment, we are going to use `cartodata.pipeline.datasets` module to create a dataset instance, `cartodata.pipeline.projectionnd` and `cartodata.pipeline.projection2d` modules for projections and `cartodata.pipeline.clustering` to generate clusters. The listed parameters are necessary for the constructors of the classes that we are going to use. Projection and clustering classes in these modules extend `cartodata.pipeline.base.BaseEntity` class that provides us `params` property that returns the `key` and certain parameter values of the entity. This property can be used to generate hierarchical directory structure corresponding to the entity/estimator used. In the params dictionary above, all defined fields exist for the classes in the modules specified above, except `extra_param`. We will also demonstrate how we can use this parameter to affect the directory structure. We will use this parameter for n-dimensional projection. .. GENERATED FROM PYTHON SOURCE LINES 64-70 .. code-block:: Python param_iterator = GridIterator(params_dict=params) "" param_iterator.params_frame.shape .. rst-class:: sphx-glr-script-out .. code-block:: none (45, 7) .. GENERATED FROM PYTHON SOURCE LINES 71-75 Implement custom Scoring -------------------------------------- All possible scoring classes are in the `cartodata.model_selection.scoring` module. We will run scoring for each, so we will import them all. .. GENERATED FROM PYTHON SOURCE LINES 75-81 .. code-block:: Python from cartodata.model_selection.scoring import ( NeighborsND, Neighbors2D, Comparative, TrustworthinessSklearn, TrustworthinessUmap, Clustering, FinalScore ) .. GENERATED FROM PYTHON SOURCE LINES 82-90 Besides we can define a new Custom score. When defining a new score, there are some points that we have to pay attention: - The new scoring should inherit from `cartodata.model_selection.scoring.ScoringBase` class. - It should define `KEY` as class variable. - It should implement an `evaluate` function as `classmethod` - `evaluate` function should return a `cartodata.model_selection.utils.Result` instance - If the parameters of the scoring is to be listed in the final results, scoring parameters should be appended to the result .. GENERATED FROM PYTHON SOURCE LINES 90-114 .. code-block:: Python from cartodata.model_selection.scoring import ScoringBase from cartodata.model_selection.utils import Result class CustomScore(ScoringBase): KEY = "custom" DEFAULTS = { "factor": 20 } @classmethod def evaluate(cls, key_nD, factor=20): result = Result() # we can assume that key_nD is necessary to calculate this score. # factor is a scoring variable that can change the value of the scoring, # it will be specified as kwargs result.add_score(f"custom_score_{key_nD}", factor) print(f"{cls.KEY} scores:\n{result.print()}") return result .. GENERATED FROM PYTHON SOURCE LINES 115-124 Implement custom Experiment class -------------------------------------- `cartodata.model_selection.experiment.BaseExperiment` class implements necessary functions to run an experiment. However it does not implement the `run_step` function to execute steps of each iteration; generation of matrices for each phase and the scoring of the results. `cartodata.pipeline.experiment.PipelineExperiment` is one example class that inherits `BaseExperiment` and implements `run_steps` function using Pipeline API. Now we will implement a custom experiment. First let's have a look at the documentation for `BaseExperiment`. .. GENERATED FROM PYTHON SOURCE LINES 124-129 .. code-block:: Python from cartodata.model_selection.experiment import BaseExperiment # noqa help(BaseExperiment) .. rst-class:: sphx-glr-script-out .. code-block:: none Help on class BaseExperiment in module cartodata.model_selection.experiment: class BaseExperiment(builtins.object) | BaseExperiment(dataset_name, dataset_version, top_dir, conf_dir, input_dir, nature, source, selector, score_list=None, **score_params) | | A base class for an experiment. | | Methods defined here: | | __init__(self, dataset_name, dataset_version, top_dir, conf_dir, input_dir, nature, source, selector, score_list=None, **score_params) | Parameters | ---------- | nature: str | source: str | top_dir: str or Path | the top directory inside which experiment artifacts will be | generated | selector: cartodata.model_selection.selector.ParameterSelector | the selector that provides the next set of parameters for the | experiment | score_list: list of cartodata.model_selection.evaluators.Evaluators, | default=None | score_params: kwargs | The parameters that will be used by evaluators should be specified | as kwargs in the format ``evaluator_key__parameter_name=value`` | For example ``name_list`` parameter for ``final_score`` should be | specified as: | | ``final_score__name_list=["neighbors_nd_articles_authors", | "neighbors_2d_articles_authors", | "clu_score"] | | add_2D_scores(self, all_natures, dir_mat, key_nD, key_2D, dir_nD, dir_2D, plots=None, run_params={}) | | add_clustering_scores(self, all_natures, cluster_natures, key_nD, key_2D, dir_mat, dir_nD, dir_2D, dir_clus, words_index, plots=None, run_params={}) | | add_nD_scores(self, key_nD=None, dir_mat=None, dir_nD=None, run_params={}) | | add_plots_to_scoring(self, plots, natures) | | add_post_scores(self, dir_clus, run_params={}) | | finish_iteration(self, next_params, dir_clus) | | persist_result(self, result, phase, phase_result, dump_dir) | | run(self, nbmax) | Runs the experiment for the specified `nbmax` number of times. | | :param nbmax: maximum number of experiments to run. | | run_steps(next_params) | | save_plots(self, natures, matrices, dir_dump, title_parts, annotations=None, annotation_mat=None, file_ext='.png') | | ---------------------------------------------------------------------- | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) .. GENERATED FROM PYTHON SOURCE LINES 130-131 We extend the `BaseExperiment` class and implement `run_steps` function. .. GENERATED FROM PYTHON SOURCE LINES 131-351 .. code-block:: Python from cartodata.operations import ( dump_matrices, dump_scores, load_matrices_from_dumps, load_scores, dump_labels, load_labels ) from cartodata.phases import ( PhaseProjectionND, PhaseProjection2D, PhaseClustering, PhasePost ) class Experiment(BaseExperiment): # assume we want to add custom score to nD phase # we can override add_nD_scores to add the new scoring to this phase def add_nD_scores(self, key_nD=None, dir_mat=None, dir_nD=None, run_params={}): # call super class definition so that the previously defined scorings # for this phase run phase_result = super().add_nD_scores(key_nD, dir_mat, dir_nD, run_params) phase_result.print() # run our custom scoring if self._score_exists_in_list(CustomScore): custom_score_params = CustomScore.get_kwargs(self.score_params) result = CustomScore.evaluate( key_nD, **custom_score_params ) result.append_run_params(run_params) result.append_score_params(custom_score_params) self.persist_result(result, PhaseProjectionND, phase_result, dir_nD) return phase_result def _entity_matrices_exist(self, natures, matrix_type, working_dir=None): if natures is None or len(natures) == 0: print("No entity natures specified!") for nature in natures: entity_files = working_dir.rglob( f"{nature}_{matrix_type}.*" ) if len(list(entity_files)) == 0: return False print( f"Matrices of type {matrix_type} for {', '.join(natures)}" " already exist. Skipping creation." ) return True def run_steps(self, next_params): print(f"\nRunning experiment for parameters:\n{next_params}") #------------------------------------- # load dataset dataset = self._load_dataset(next_params) dataset.input_dir = self.input_dir dataset.update_top_dir(self.top_dir) # set top working dir for next_params robustseed = next_params["robustseed"] dir_mat = dataset.working_dir / str(robustseed) / dataset.params dir_mat.mkdir(parents=True, exist_ok=True) #------------------------------------- # create and save entity matrices if self._entity_matrices_exist(dataset.natures, "mat", dir_mat): matrices = load_matrices_from_dumps(dataset.natures, "mat", dir_mat) scores = load_scores(dataset.natures, dir_mat) else: matrices, scores = dataset.create_matrices_and_scores() dump_scores(dataset.natures, scores, dir_mat) dump_matrices(dataset.natures, matrices, "mat", dir_mat) #------------------------------------- # do n-dimensional projection projection_nD = PhaseProjectionND.get_executor(next_params) key_nD = projection_nD.key # First get the value of extra_param dict_projection_nD = next_params.get(PhaseProjectionND.NAME) extra_param = dict_projection_nD.get("extra_param", None) if extra_param is not None: # if it is required to use this parameter for nD projection, # the relevant class should also be modified to set self.extra_param # set this value to params of projection_nD instance projection_nD._add_to_params(["extra_param"]) projection_nD.extra_param = extra_param dir_nD = dir_mat / projection_nD.params # The value of the extra_param will appear in the name of the # directory generated for nD projection. dir_nD.mkdir(parents=True, exist_ok=True) if self._entity_matrices_exist(dataset.natures, key_nD, dir_nD): matrices_nD = load_matrices_from_dumps(dataset.natures, key_nD, dir_nD) else: matrices_nD = projection_nD.execute(matrices, dataset, dir_nD) print(f'{key_nD} matrices generated.') dump_matrices(dataset.natures, matrices_nD, key_nD, dir_nD) # add n-dimensional projection scores phase_result = self.add_nD_scores( key_nD, dir_mat, dir_nD, run_params=projection_nD.params_values ) self.result.append(phase_result) self.result.persist_scores(dir_nD) print( f"{PhaseProjectionND.long_name()} scores:\n{phase_result.print()}" ) #------------------------------------- # do 2-dimensional projection projection_2D = PhaseProjection2D.get_executor(next_params) key_2D = projection_2D.key dir_2D = dir_nD / projection_2D.params dir_2D.mkdir(parents=True, exist_ok=True) if self._entity_matrices_exist(dataset.natures, key_2D, dir_2D): matrices_2D = load_matrices_from_dumps(dataset.natures, key_2D, dir_2D) else: matrices_2D = projection_2D.execute(matrices_nD, dir_2D) print(f'{key_2D} matrices generated.') dump_matrices(dataset.natures, matrices_2D, key_2D, dir_2D) # save 2D plots title_parts = [dataset.name, dataset.version, projection_nD.params, projection_2D.params] fig = self.save_plots(dataset.natures, matrices_2D, dir_2D, title_parts) # add 2-dimensional projection scores phase_result = self.add_2D_scores( dataset.natures, dir_mat, key_nD, key_2D, dir_nD, dir_2D, plots=[fig], run_params=projection_2D.params_values ) self.result.append(phase_result) self.result.persist_scores(dir_2D) print( f"{PhaseProjection2D.long_name()} scores:\n{phase_result.print()}" ) #------------------------------------- # do clustering clustering = PhaseClustering.get_executor(next_params) cluster_natures = clustering.natures key_clus = clustering.key dir_clus = dir_2D / clustering.params dir_clus.mkdir(parents=True, exist_ok=True) if (self._entity_matrices_exist(cluster_natures, key_2D, dir_clus) and self._entity_matrices_exist(cluster_natures, key_nD, dir_clus)): clus_scores = load_scores(cluster_natures, dir_clus) clus_nD = load_matrices_from_dumps(cluster_natures, key_nD, dir_clus) clus_2D = load_matrices_from_dumps(cluster_natures, key_2D, dir_clus) clus_eval_pos = load_scores(cluster_natures, dir_clus, suffix="eval_pos") clus_eval_neg = load_scores(cluster_natures, dir_clus, suffix="eval_neg") labels = load_labels(cluster_natures, dir_clus) else: (clus_nD, clus_2D, clus_scores, cluster_labels, cluster_eval_pos, cluster_eval_neg) = clustering.create_clusters( matrices, matrices_2D, matrices_nD, scores, dataset.corpus_index ) dump_scores(cluster_natures, clus_scores, dir_clus) dump_matrices(cluster_natures, clus_nD, key_nD, dir_clus) dump_matrices(cluster_natures, clus_2D, key_2D, dir_clus) dump_scores(cluster_natures, cluster_eval_pos, dir_clus, suffix="eval_pos") dump_scores(cluster_natures, cluster_eval_neg, dir_clus, suffix="eval_neg") dump_labels(cluster_natures, cluster_labels, dir_clus) # save clustering plots figs = [] for i, nature in enumerate(cluster_natures): clus_scores_i = clus_scores[i] clus_mat_i = clus_2D[i] title_parts = [dataset.name, dataset.version, projection_nD.params, projection_2D.params, clustering.key, nature] fig = self.save_plots( dataset.natures, matrices_2D, dir_clus, title_parts, annotations=clus_scores_i.index, annotation_mat=clus_mat_i ) figs.append(fig) # add clustering scores phase_result = self.add_clustering_scores( dataset.natures, cluster_natures, key_nD, key_2D, dir_mat, dir_nD, dir_2D, dir_clus, dataset.corpus_index, plots=figs, run_params=clustering.params_values ) self.result.append(phase_result) self.result.persist_scores(dir_clus) print( f"{PhaseClustering.long_name()} scores:\n{phase_result.print()}" ) #------------------------------------- phase_result = self.add_post_scores(dir_clus) self.result.append(phase_result) self.result.persist_scores(dir_clus) print( f"{PhasePost.long_name()} scores:\n{phase_result.print()}" ) self.finish_iteration(next_params, dir_clus) print("Finished running step!") .. GENERATED FROM PYTHON SOURCE LINES 352-362 Now we can initialize `Experiment` instance to run our scoring. We need to specify which scores to calculate to the experiment using the parameter `score_list`. If we do not specify, the experiment will evaluate scores for all available scoring classes. We will do it explicitly and specify all classes defined in `cartodata.model_selection.scoring` module, plus `CustomScore` class that we have defined above. It is possible to specify parameters for score classes as keyword arguments. For example, if `cartodata.model_selection.scoring.FinalScore` is specified in the `score_list`, the experiment calculates an aggregated score taking average of all scores at the end of each run. If instead of all scores, we want a subset of scores to be included in the average, we can specify it using `final_score__name_list`. For each scoring class, we should name the parameter in the format `scoring_KEY__scoring_parameter`. .. GENERATED FROM PYTHON SOURCE LINES 362-386 .. code-block:: Python from cartodata.phases import PhaseProjectionND, PhaseProjection2D, PhaseClustering experiment = Experiment( "lisn", "2022.11.15.1", TOP_DIR, CONF_DIR, INPUT_DIR, NATURE, SOURCE, param_iterator, score_list=[CustomScore, NeighborsND, Neighbors2D, Comparative, # TrustworthinessSklearn, # TrustworthinessUmap, Clustering, FinalScore], final_score__name_list=[ PhaseProjectionND.prefix("neighbors_articles_authors"), PhaseProjection2D.prefix("neighbors_articles_authors"), PhaseClustering.prefix("clu_score")], neighbors__recompute=True, neighbors__min_score =30, # trustworthiness_sklearn__n_neighbors=10, custom__factor=10 ) .. GENERATED FROM PYTHON SOURCE LINES 387-402 We have initialized the experiment and specified - ``` name_list=[ PhaseProjectionND.prefix("neighbors_articles_authors"), PhaseProjection2D.prefix("neighbors_articles_authors"), PhaseClustering.prefix("clu_score") ] ``` for `FinalScore` scoring - `recompute=True`, `min_score=30` for `NeighborsND` and `Neighbors2D` scoring - `n_neighbors=10` for `TrustworthinessSklearn` - `factor=10` for `CustomScore` Now we will run the experiment for 3 different set of parameters. .. GENERATED FROM PYTHON SOURCE LINES 402-405 .. code-block:: Python results = experiment.run(3) .. rst-class:: sphx-glr-script-out .. code-block:: none Running experiment for parameters: {'id': '68d289ffd85ae917e710', 'robustseed': 0, 'authors__filter_min_score': 4, 'filter_min_score': 6, 'projection_nD': {'key': 'lsa', 'num_dims': 50, 'extra_param': True}, 'projection_2D': {'key': 'umap', 'n_neighbors': 10, 'min_dist': 0.1, 'metric': 'euclidean'}} lsa matrices generated. ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 dtype: float64 ================================ Run params : {} -------------------------------- Scoring params : {} ================================ ----------- Scores ----------- custom_score_lsa : 10.0000 --------- Desc Scores --------- --------- Raw Scores --------- custom scores: None ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42, '2_nD__sfactor': 10} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 2_nD__custom_score_lsa : 10.0000 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 dtype: float64 2_projection_nD scores: None umap matrices generated. ================================ Run params : {'3_2D__rkey': 'umap', '3_2D__rmetric': 'euclidean', '3_2D__rn_neighbors': 10, '3_2D__rmin_dist': 0.1, '3_2D__rinit': 'random', '3_2D__rlearning_rate': 1.0, '3_2D__rn_epochs': None, '3_2D__rrandom_state': None} -------------------------------- Scoring params : {'3_2D__smin_score': 30, '3_2D__srecompute': True, '3_2D__ssample_size': None, '3_2D__sn_neighbors': 10, '3_2D__srandom_state': 42} ================================ ----------- Scores ----------- 3_2D__neighbors_articles_authors : 0.4324 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean : -0.0455 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median : -0.0446 --------- Desc Scores --------- 3_2D__neighbors_articles_authors_det 0 Loïc Paulevé : 0.77 1 Céline Gicquel : 0.66 2 Nikolaus Hansen : 0.61 3 Dimo Brockhoff : 0.61 4 Isabelle Guyon : 0.58 5 Cyril Furtlehner : 0.57 6 Tobias Isenberg : 0.57 7 Sébastien Tixeuil : 0.56 8 Yann Ponty : 0.56 9 Philippe Caillou : 0.56 10 Raymond Ros : 0.54 11 Anne Auger : 0.53 12 Albert Cohen : 0.51 13 Guillaume Melquiond : 0.51 14 Paola Tubaro : 0.50 15 Olivier Teytaud : 0.49 16 Nicolas Bredeche : 0.49 17 Sarah Cohen-Boulakia : 0.49 18 Marc Baboulin : 0.48 19 Fatiha Saïs : 0.47 20 Chantal Reynaud : 0.47 21 Sylvie Boldo : 0.47 22 Franck Cappello : 0.46 23 Nathann Cohen : 0.45 24 Ioana Manolescu : 0.44 25 Lonni Besançon : 0.43 26 Marc Schoenauer : 0.42 27 Jean-Daniel Fekete : 0.41 28 Petra Isenberg : 0.41 29 Nathalie Pernelle : 0.41 30 Guillaume Charpiat : 0.40 31 Michèle Sebag : 0.39 32 Fatiha Zaidi : 0.38 33 Claude Marché : 0.37 34 Steven Martin : 0.35 35 Olivier Chapuis : 0.32 36 Anastasia Bezerianos : 0.31 37 François Goasdoué : 0.31 38 Pierre Dragicevic : 0.31 39 Alain Denise : 0.29 40 Michel Beaudouin-Lafon : 0.28 41 Johanne Cohen : 0.26 42 Caroline Appert : 0.24 43 Wendy Mackay : 0.23 44 Emmanuel Pietriga : 0.23 45 Balázs Kégl : 0.23 46 Evelyne Lutton : 0.23 47 Wendy E. Mackay : 0.21 dtype: object VALUE : 0.4324 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_det 0 Céline Gicquel : -0.16 1 Guillaume Charpiat : -0.13 2 Raymond Ros : -0.12 3 François Goasdoué : -0.12 4 Sébastien Tixeuil : -0.12 5 Philippe Caillou : -0.12 6 Paola Tubaro : -0.11 7 Cyril Furtlehner : -0.09 8 Sarah Cohen-Boulakia : -0.09 9 Claude Marché : -0.09 10 Olivier Teytaud : -0.07 11 Nathalie Pernelle : -0.07 12 Nikolaus Hansen : -0.07 13 Petra Isenberg : -0.07 14 Wendy Mackay : -0.07 15 Olivier Chapuis : -0.07 16 Ioana Manolescu : -0.06 17 Anne Auger : -0.06 18 Lonni Besançon : -0.06 19 Marc Baboulin : -0.06 20 Balázs Kégl : -0.06 21 Nicolas Bredeche : -0.05 22 Isabelle Guyon : -0.05 23 Evelyne Lutton : -0.05 24 Chantal Reynaud : -0.04 25 Caroline Appert : -0.04 26 Fatiha Saïs : -0.03 27 Yann Ponty : -0.03 28 Emmanuel Pietriga : -0.03 29 Jean-Daniel Fekete : -0.02 30 Marc Schoenauer : -0.02 31 Franck Cappello : -0.02 32 Sylvie Boldo : -0.02 33 Albert Cohen : -0.02 34 Fatiha Zaidi : -0.02 35 Michel Beaudouin-Lafon : -0.01 36 Johanne Cohen : -0.01 37 Steven Martin : -0.01 38 Pierre Dragicevic : -0.01 39 Alain Denise : -0.01 40 Anastasia Bezerianos : -0.01 41 Dimo Brockhoff : -0.01 42 Michèle Sebag : 0.00 43 Wendy E. Mackay : 0.01 44 Guillaume Melquiond : 0.03 45 Tobias Isenberg : 0.03 46 Loïc Paulevé : 0.04 47 Nathann Cohen : 0.07 dtype: object VALUE : -0.0455 --------- Raw Scores --------- 3_2D__neighbors_articles_authors Sébastien Tixeuil 0.563830 Michèle Sebag 0.388321 Johanne Cohen 0.260465 Albert Cohen 0.510345 Wendy E. Mackay 0.210870 Philippe Caillou 0.558140 Alain Denise 0.288889 Jean-Daniel Fekete 0.414465 Emmanuel Pietriga 0.233333 Yann Ponty 0.559091 Marc Schoenauer 0.420863 Franck Cappello 0.458537 Caroline Appert 0.236957 Michel Beaudouin-Lafon 0.282716 Wendy Mackay 0.234043 Anne Auger 0.530380 Evelyne Lutton 0.227027 Pierre Dragicevic 0.308642 Ioana Manolescu 0.443902 Nikolaus Hansen 0.613580 Nicolas Bredeche 0.491176 Olivier Teytaud 0.494340 François Goasdoué 0.311321 Nathalie Pernelle 0.408824 Fatiha Saïs 0.473171 Sarah Cohen-Boulakia 0.487879 Claude Marché 0.372340 Chantal Reynaud 0.470000 Olivier Chapuis 0.317308 Steven Martin 0.346154 Fatiha Zaidi 0.375000 Balázs Kégl 0.228947 Paola Tubaro 0.497436 Raymond Ros 0.535294 Cyril Furtlehner 0.571795 Anastasia Bezerianos 0.311940 Sylvie Boldo 0.468571 Guillaume Melquiond 0.506061 Marc Baboulin 0.480000 Dimo Brockhoff 0.605128 Nathann Cohen 0.446341 Petra Isenberg 0.409346 Tobias Isenberg 0.570940 Loïc Paulevé 0.769048 Céline Gicquel 0.660526 Isabelle Guyon 0.577528 Guillaume Charpiat 0.396774 Lonni Besançon 0.427273 dtype: float64 3_2D__2_nD_3_2D_neighbors_articles_authors_dim 2_nD__neighbors_articles_authors \ Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 3_2D__neighbors_articles_authors scdec Sébastien Tixeuil 0.563830 -0.117021 Michèle Sebag 0.388321 0.004380 Johanne Cohen 0.260465 -0.011628 Albert Cohen 0.510345 -0.018966 Wendy E. Mackay 0.210870 0.010870 Philippe Caillou 0.558140 -0.116279 Alain Denise 0.288889 -0.008333 Jean-Daniel Fekete 0.414465 -0.022642 Emmanuel Pietriga 0.233333 -0.026984 Yann Ponty 0.559091 -0.027273 Marc Schoenauer 0.420863 -0.022302 Franck Cappello 0.458537 -0.021951 Caroline Appert 0.236957 -0.036957 Michel Beaudouin-Lafon 0.282716 -0.014815 Wendy Mackay 0.234043 -0.068085 Anne Auger 0.530380 -0.060759 Evelyne Lutton 0.227027 -0.045946 Pierre Dragicevic 0.308642 -0.008642 Ioana Manolescu 0.443902 -0.063415 Nikolaus Hansen 0.613580 -0.072840 Nicolas Bredeche 0.491176 -0.052941 Olivier Teytaud 0.494340 -0.073585 François Goasdoué 0.311321 -0.118868 Nathalie Pernelle 0.408824 -0.073529 Fatiha Saïs 0.473171 -0.034146 Sarah Cohen-Boulakia 0.487879 -0.093939 Claude Marché 0.372340 -0.093617 Chantal Reynaud 0.470000 -0.043333 Olivier Chapuis 0.317308 -0.067308 Steven Martin 0.346154 -0.010256 Fatiha Zaidi 0.375000 -0.015625 Balázs Kégl 0.228947 -0.057895 Paola Tubaro 0.497436 -0.105128 Raymond Ros 0.535294 -0.120588 Cyril Furtlehner 0.571795 -0.094872 Anastasia Bezerianos 0.311940 -0.007463 Sylvie Boldo 0.468571 -0.020000 Guillaume Melquiond 0.506061 0.033333 Marc Baboulin 0.480000 -0.060000 Dimo Brockhoff 0.605128 -0.005128 Nathann Cohen 0.446341 0.065854 Petra Isenberg 0.409346 -0.070093 Tobias Isenberg 0.570940 0.034188 Loïc Paulevé 0.769048 0.042857 Céline Gicquel 0.660526 -0.157895 Isabelle Guyon 0.577528 -0.046067 Guillaume Charpiat 0.396774 -0.125806 Lonni Besançon 0.427273 -0.060606 3_projection_2D scores: None Nothing in cache, initial Fitting with min_cluster_size=15 Found 84 clusters in 0.2575946639990434s Max Fitting with min_cluster_size=30 Found 47 clusters in 0.1043320050011971s Max Fitting with min_cluster_size=60 Found 23 clusters in 0.10111476800011587s Max Fitting with min_cluster_size=120 Found 11 clusters in 0.09537671500220313s Max Fitting with min_cluster_size=240 Found 3 clusters in 0.09179714699712349s Midpoint Fitting with min_cluster_size=180 Found 9 clusters in 0.09135648099982063s Midpoint Fitting with min_cluster_size=210 Found 3 clusters in 0.09339748499769485s Midpoint Fitting with min_cluster_size=195 Found 3 clusters in 0.09393366999938735s Midpoint Fitting with min_cluster_size=187 Found 3 clusters in 0.09419226499812794s Re-Fitting with min_cluster_size=180 Found 9 clusters in 0.09104692099936074s Clusters cached: [3, 3, 3, 3, 9, 11, 23, 47, 84] Nothing in cache, initial Fitting with min_cluster_size=15 Found 84 clusters in 0.09817058000044199s Max Fitting with min_cluster_size=30 Found 47 clusters in 0.09374955499879434s Max Fitting with min_cluster_size=60 Found 23 clusters in 0.09158697800012305s Midpoint Fitting with min_cluster_size=45 Found 31 clusters in 0.09903591299735126s Midpoint Fitting with min_cluster_size=52 Found 29 clusters in 0.0987786400000914s No need Re-Fitting with min_cluster_size=52 Clusters cached: [23, 29, 31, 47, 84] ================================ Run params : {'4_clus__rkey': 'hdbscan', '4_clus__rbase_factor': 3} -------------------------------- Scoring params : {'4_clus__siter_stab': 2, '4_clus__sremove_stab': [0, 0.01, 0.03, 0.1, 0.25], '4_clus__smetric': 'euclidean', '4_clus__srandom_state': None} ================================ ----------- Scores ----------- 4_clus__nb_clust_0 : 8.0000 4_clus__silhouette_0 : 0.1605 4_clus__avg_word_couv_0 : 0.4438 4_clus__med_word_couv_0 : 0.4656 4_clus__avg_word_couv_minus_0 : 0.4143 4_clus__big_small_ratio_0 : 6.2094 4_clus__stab_clus_0 : 0.2333 4_clus__nb_clust_1 : 24.0000 4_clus__silhouette_1 : 0.2479 4_clus__avg_word_couv_1 : 0.6254 4_clus__med_word_couv_1 : 0.6048 4_clus__avg_word_couv_minus_1 : 0.6021 4_clus__big_small_ratio_1 : 16.8947 4_clus__stab_clus_1 : 0.1724 4_clus__avg_stab_avg : 0.2029 4_clus__avg_couv_avg : 0.5346 4_clus__clu_score : 0.3687 --------- Desc Scores --------- 4_clus__clus_eval_pos_0_det 0 visualizations, interaction techniques : s 538... 1 quantitative methods, bioinformatics : s 455 s... 2 ontology, documents : s 404 stb 0.00 + 0.36 - ... 3 networking internet architecture, cluster comp... 4 matrix, architectures : s 307 stb 0.10 + 0.49 ... 5 discrete mathematics, combinatorics : s 295 st... 6 logic science, semantics : s 282 stb 0.10 + 0.... 7 image, french : s 211 stb 0.20 + 0.51 - 0.04 8 fluid, operations : s 191 stb 0.00 + 0.53 - 0.04 dtype: object VALUE : 0.4438 4_clus__clus_eval_pos_1_det 0 verification, testing : s 282 stb 0.00 + 0.56 ... 1 displays, interfaces : s 277 stb 0.10 + 0.41 -... 2 networking internet, services : s 217 stb 0.00... 3 humanities social sciences, social networks : ... 4 query : s 131 stb 0.10 + 0.81 - 0.02 5 finite, trees : s 131 stb 0.20 + 0.49 - 0.06 6 vertices, minimum : s 129 stb 0.90 + 0.69 - 0.02 7 biology, genes : s 127 stb 0.00 + 0.47 - 0.03 8 secondary structure, protein : s 124 stb 0.00 ... 9 compiler, optimizations : s 120 stb 0.00 + 0.5... 10 dynamics, mechanics : s 120 stb 0.00 + 0.65 - ... 11 fault, cloud : s 118 stb 0.00 + 0.65 - 0.03 12 neural networks, reinforcement learning : s 11... 13 ontologies, linked : s 113 stb 0.00 + 0.58 - 0.03 14 inference, traffic : s 111 stb 0.60 + 0.51 - 0.03 15 information visualization, cognitive science :... 16 multi armed, robotics : s 93 stb 0.00 + 0.61 -... 17 natural language, speech : s 91 stb 0.00 + 0.5... 18 creative, movement : s 88 stb 0.00 + 0.60 - 0.01 19 image processing, vision pattern recognition :... 20 monte carlo, games : s 76 stb 0.90 + 0.95 - 0.02 21 document, semantic annotations : s 76 stb 0.00... 22 floating point, mathematical : s 70 stb 0.10 +... 23 evolution strategies, noisy optimization : s 6... 24 linear systems, matrices : s 61 stb 0.00 + 0.7... 25 stochastic, mixed integer linear : s 60 stb 0.... 26 multi objective, surrogate model : s 59 stb 0.... 27 benchmarking : s 58 stb 1.00 + 0.84 - 0.01 28 visual analytics : s 57 stb 0.00 + 0.82 - 0.01 dtype: object VALUE : 0.6254 --------- Raw Scores --------- 4_clustering scores: None ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score'] ================================ Run params : {} -------------------------------- Scoring params : {'6_pst__sname_list': ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score']} ================================ ----------- Scores ----------- 6_pst__final_score : 0.4263 --------- Desc Scores --------- 6_pst__final_score_det 0 2_nD__neighbors_articles_authors : 0.48 1 3_2D__neighbors_articles_authors : 0.43 2 4_clus__clu_score : 0.37 dtype: object VALUE : 0.4263 --------- Raw Scores --------- 6_post scores: None Finished running step! Running experiment for parameters: {'id': 'ce1c0d334fc75a6570a5', 'robustseed': 0, 'authors__filter_min_score': 4, 'filter_min_score': 6, 'projection_nD': {'key': 'lsa', 'num_dims': 50, 'extra_param': True}, 'projection_2D': {'key': 'umap', 'n_neighbors': 10, 'min_dist': 0.25, 'metric': 'euclidean'}} Matrices of type mat for articles, authors, teams, labs, words already exist. Skipping creation. Matrices of type lsa for articles, authors, teams, labs, words already exist. Skipping creation. ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 ================================ Run params : {} -------------------------------- Scoring params : {} ================================ ----------- Scores ----------- custom_score_lsa : 10.0000 --------- Desc Scores --------- --------- Raw Scores --------- custom scores: None ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42, '2_nD__sfactor': 10} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 2_nD__custom_score_lsa : 10.0000 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 2_projection_nD scores: None umap matrices generated. ================================ Run params : {'3_2D__rkey': 'umap', '3_2D__rmetric': 'euclidean', '3_2D__rn_neighbors': 10, '3_2D__rmin_dist': 0.25, '3_2D__rinit': 'random', '3_2D__rlearning_rate': 1.0, '3_2D__rn_epochs': None, '3_2D__rrandom_state': None} -------------------------------- Scoring params : {'3_2D__smin_score': 30, '3_2D__srecompute': True, '3_2D__ssample_size': None, '3_2D__sn_neighbors': 10, '3_2D__srandom_state': 42} ================================ ----------- Scores ----------- 3_2D__neighbors_articles_authors : 0.4255 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean : -0.0524 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median : -0.0467 --------- Desc Scores --------- 3_2D__neighbors_articles_authors_det 0 Loïc Paulevé : 0.73 1 Céline Gicquel : 0.67 2 Isabelle Guyon : 0.59 3 Philippe Caillou : 0.59 4 Nikolaus Hansen : 0.58 5 Dimo Brockhoff : 0.58 6 Sébastien Tixeuil : 0.57 7 Yann Ponty : 0.57 8 Cyril Furtlehner : 0.56 9 Tobias Isenberg : 0.55 10 Raymond Ros : 0.55 11 Nicolas Bredeche : 0.52 12 Fatiha Saïs : 0.50 13 Anne Auger : 0.49 14 Marc Baboulin : 0.48 15 Paola Tubaro : 0.48 16 Guillaume Melquiond : 0.48 17 Olivier Teytaud : 0.47 18 Albert Cohen : 0.47 19 Sylvie Boldo : 0.47 20 Franck Cappello : 0.45 21 Sarah Cohen-Boulakia : 0.44 22 Lonni Besançon : 0.44 23 Ioana Manolescu : 0.43 24 Chantal Reynaud : 0.43 25 Marc Schoenauer : 0.40 26 Nathann Cohen : 0.40 27 Guillaume Charpiat : 0.40 28 Claude Marché : 0.40 29 Jean-Daniel Fekete : 0.39 30 Fatiha Zaidi : 0.38 31 Petra Isenberg : 0.38 32 Nathalie Pernelle : 0.38 33 Steven Martin : 0.37 34 Michèle Sebag : 0.36 35 François Goasdoué : 0.33 36 Michel Beaudouin-Lafon : 0.31 37 Olivier Chapuis : 0.31 38 Pierre Dragicevic : 0.30 39 Anastasia Bezerianos : 0.30 40 Johanne Cohen : 0.27 41 Alain Denise : 0.26 42 Caroline Appert : 0.26 43 Emmanuel Pietriga : 0.24 44 Wendy Mackay : 0.24 45 Balázs Kégl : 0.23 46 Evelyne Lutton : 0.22 47 Wendy E. Mackay : 0.21 dtype: object VALUE : 0.4255 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_det 0 Sarah Cohen-Boulakia : -0.15 1 Céline Gicquel : -0.14 2 Guillaume Charpiat : -0.12 3 Paola Tubaro : -0.12 4 Sébastien Tixeuil : -0.11 5 Raymond Ros : -0.11 6 Nikolaus Hansen : -0.11 7 Anne Auger : -0.10 8 François Goasdoué : -0.10 9 Cyril Furtlehner : -0.10 10 Nathalie Pernelle : -0.10 11 Olivier Teytaud : -0.10 12 Petra Isenberg : -0.10 13 Chantal Reynaud : -0.09 14 Philippe Caillou : -0.08 15 Ioana Manolescu : -0.08 16 Olivier Chapuis : -0.08 17 Claude Marché : -0.07 18 Balázs Kégl : -0.06 19 Wendy Mackay : -0.06 20 Albert Cohen : -0.06 21 Marc Baboulin : -0.06 22 Lonni Besançon : -0.05 23 Evelyne Lutton : -0.05 24 Jean-Daniel Fekete : -0.04 25 Marc Schoenauer : -0.04 26 Alain Denise : -0.04 27 Dimo Brockhoff : -0.03 28 Isabelle Guyon : -0.03 29 Michèle Sebag : -0.03 30 Franck Cappello : -0.03 31 Anastasia Bezerianos : -0.02 32 Nicolas Bredeche : -0.02 33 Yann Ponty : -0.02 34 Sylvie Boldo : -0.02 35 Emmanuel Pietriga : -0.02 36 Caroline Appert : -0.02 37 Pierre Dragicevic : -0.02 38 Fatiha Saïs : -0.01 39 Fatiha Zaidi : -0.01 40 Johanne Cohen : -0.00 41 Loïc Paulevé : 0.00 42 Guillaume Melquiond : 0.01 43 Wendy E. Mackay : 0.01 44 Michel Beaudouin-Lafon : 0.01 45 Tobias Isenberg : 0.01 46 Steven Martin : 0.02 47 Nathann Cohen : 0.02 dtype: object VALUE : -0.0524 --------- Raw Scores --------- 3_2D__neighbors_articles_authors Sébastien Tixeuil 0.565957 Michèle Sebag 0.356934 Johanne Cohen 0.267442 Albert Cohen 0.470690 Wendy E. Mackay 0.210870 Philippe Caillou 0.593023 Alain Denise 0.261111 Jean-Daniel Fekete 0.392453 Emmanuel Pietriga 0.242857 Yann Ponty 0.565152 Marc Schoenauer 0.402158 Franck Cappello 0.453659 Caroline Appert 0.256522 Michel Beaudouin-Lafon 0.308642 Wendy Mackay 0.242553 Anne Auger 0.487342 Evelyne Lutton 0.224324 Pierre Dragicevic 0.300000 Ioana Manolescu 0.426829 Nikolaus Hansen 0.579012 Nicolas Bredeche 0.520588 Olivier Teytaud 0.470755 François Goasdoué 0.326415 Nathalie Pernelle 0.382353 Fatiha Saïs 0.495122 Sarah Cohen-Boulakia 0.436364 Claude Marché 0.397872 Chantal Reynaud 0.426667 Olivier Chapuis 0.307692 Steven Martin 0.374359 Fatiha Zaidi 0.384375 Balázs Kégl 0.226316 Paola Tubaro 0.482051 Raymond Ros 0.547059 Cyril Furtlehner 0.564103 Anastasia Bezerianos 0.295522 Sylvie Boldo 0.468571 Guillaume Melquiond 0.481818 Marc Baboulin 0.484444 Dimo Brockhoff 0.576923 Nathann Cohen 0.400000 Petra Isenberg 0.384112 Tobias Isenberg 0.550427 Loïc Paulevé 0.726190 Céline Gicquel 0.673684 Isabelle Guyon 0.594382 Guillaume Charpiat 0.400000 Lonni Besançon 0.436364 dtype: float64 3_2D__2_nD_3_2D_neighbors_articles_authors_dim 2_nD__neighbors_articles_authors \ Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 3_2D__neighbors_articles_authors scdec Sébastien Tixeuil 0.565957 -0.114894 Michèle Sebag 0.356934 -0.027007 Johanne Cohen 0.267442 -0.004651 Albert Cohen 0.470690 -0.058621 Wendy E. Mackay 0.210870 0.010870 Philippe Caillou 0.593023 -0.081395 Alain Denise 0.261111 -0.036111 Jean-Daniel Fekete 0.392453 -0.044654 Emmanuel Pietriga 0.242857 -0.017460 Yann Ponty 0.565152 -0.021212 Marc Schoenauer 0.402158 -0.041007 Franck Cappello 0.453659 -0.026829 Caroline Appert 0.256522 -0.017391 Michel Beaudouin-Lafon 0.308642 0.011111 Wendy Mackay 0.242553 -0.059574 Anne Auger 0.487342 -0.103797 Evelyne Lutton 0.224324 -0.048649 Pierre Dragicevic 0.300000 -0.017284 Ioana Manolescu 0.426829 -0.080488 Nikolaus Hansen 0.579012 -0.107407 Nicolas Bredeche 0.520588 -0.023529 Olivier Teytaud 0.470755 -0.097170 François Goasdoué 0.326415 -0.103774 Nathalie Pernelle 0.382353 -0.100000 Fatiha Saïs 0.495122 -0.012195 Sarah Cohen-Boulakia 0.436364 -0.145455 Claude Marché 0.397872 -0.068085 Chantal Reynaud 0.426667 -0.086667 Olivier Chapuis 0.307692 -0.076923 Steven Martin 0.374359 0.017949 Fatiha Zaidi 0.384375 -0.006250 Balázs Kégl 0.226316 -0.060526 Paola Tubaro 0.482051 -0.120513 Raymond Ros 0.547059 -0.108824 Cyril Furtlehner 0.564103 -0.102564 Anastasia Bezerianos 0.295522 -0.023881 Sylvie Boldo 0.468571 -0.020000 Guillaume Melquiond 0.481818 0.009091 Marc Baboulin 0.484444 -0.055556 Dimo Brockhoff 0.576923 -0.033333 Nathann Cohen 0.400000 0.019512 Petra Isenberg 0.384112 -0.095327 Tobias Isenberg 0.550427 0.013675 Loïc Paulevé 0.726190 0.000000 Céline Gicquel 0.673684 -0.144737 Isabelle Guyon 0.594382 -0.029213 Guillaume Charpiat 0.400000 -0.122581 Lonni Besançon 0.436364 -0.051515 3_projection_2D scores: None Nothing in cache, initial Fitting with min_cluster_size=15 Found 70 clusters in 0.271356138997362s Max Fitting with min_cluster_size=30 Found 46 clusters in 0.10519513500184985s Max Fitting with min_cluster_size=60 Found 22 clusters in 0.10125969300133875s Max Fitting with min_cluster_size=120 Found 3 clusters in 0.10196087800068199s Midpoint Fitting with min_cluster_size=90 Found 10 clusters in 0.0980560729985882s Midpoint Fitting with min_cluster_size=105 Found 9 clusters in 0.09737261600093916s Midpoint Fitting with min_cluster_size=112 Found 7 clusters in 0.10034898000230896s Re-Fitting with min_cluster_size=105 Found 9 clusters in 0.09951053599797888s Clusters cached: [3, 7, 9, 10, 22, 46, 70] Nothing in cache, initial Fitting with min_cluster_size=15 Found 70 clusters in 0.10536656699696323s Max Fitting with min_cluster_size=30 Found 46 clusters in 0.10532998599956045s Max Fitting with min_cluster_size=60 Found 22 clusters in 0.10093085799962864s Midpoint Fitting with min_cluster_size=45 Found 29 clusters in 0.10149668499798281s Midpoint Fitting with min_cluster_size=52 Found 25 clusters in 0.1021060840030259s No need Re-Fitting with min_cluster_size=52 Clusters cached: [22, 25, 29, 46, 70] ================================ Run params : {'4_clus__rkey': 'hdbscan', '4_clus__rbase_factor': 3} -------------------------------- Scoring params : {'4_clus__siter_stab': 2, '4_clus__sremove_stab': [0, 0.01, 0.03, 0.1, 0.25], '4_clus__smetric': 'euclidean', '4_clus__srandom_state': None} ================================ ----------- Scores ----------- 4_clus__nb_clust_0 : 8.0000 4_clus__silhouette_0 : -0.0544 4_clus__avg_word_couv_0 : 0.5173 4_clus__med_word_couv_0 : 0.5374 4_clus__avg_word_couv_minus_0 : 0.4884 4_clus__big_small_ratio_0 : 14.3246 4_clus__stab_clus_0 : 0.0444 4_clus__nb_clust_1 : 24.0000 4_clus__silhouette_1 : 0.0569 4_clus__avg_word_couv_1 : 0.6466 4_clus__med_word_couv_1 : 0.6961 4_clus__avg_word_couv_minus_1 : 0.6206 4_clus__big_small_ratio_1 : 26.2830 4_clus__stab_clus_1 : 0.0480 4_clus__avg_stab_avg : 0.0462 4_clus__avg_couv_avg : 0.5819 4_clus__clu_score : 0.3141 --------- Desc Scores --------- 4_clus__clus_eval_pos_0_det 0 query, networking internet architecture : s 11... 1 visualizations, interfaces : s 586 stb 0.30 + ... 2 benchmarking, multi objective : s 147 stb 0.00... 3 logic science, semantics : s 138 stb 0.00 + 0.... 4 vertices, minimum : s 132 stb 0.10 + 0.68 - 0.02 5 humanities social sciences, social networks : ... 6 fluid, dynamics : s 125 stb 0.00 + 0.67 - 0.05 7 combinatorics, automata : s 115 stb 0.00 + 0.5... 8 biological, metabolic : s 114 stb 0.00 + 0.57 ... dtype: object VALUE : 0.5173 4_clus__clus_eval_pos_1_det 0 interaction techniques, physical : s 529 stb 0... 1 ontology, documents : s 273 stb 0.20 + 0.41 - ... 2 networking internet, reinforcement learning : ... 3 verification, calculus : s 138 stb 0.00 + 0.66... 4 discrete mathematics, vertex : s 132 stb 0.00 ... 5 humanities social, community : s 129 stb 0.00 ... 6 numerical simulations, mechanics : s 125 stb 0... 7 trees, finite : s 115 stb 0.00 + 0.52 - 0.06 8 genes, metabolism : s 114 stb 0.00 + 0.40 - 0.01 9 architectures, programming languages : s 102 s... 10 queries : s 98 stb 0.00 + 0.76 - 0.02 11 noisy optimization, gradient : s 82 stb 0.00 +... 12 secondary structure, sequence : s 81 stb 0.00 ... 13 image, motion : s 77 stb 0.00 + 0.87 - 0.03 14 testing, model checking : s 74 stb 0.00 + 0.77... 15 operations, bounds : s 72 stb 0.00 + 0.75 - 0.07 16 protein, molecular : s 71 stb 0.00 + 0.83 - 0.02 17 services, cloud : s 71 stb 0.10 + 0.86 - 0.04 18 testbed, black : s 71 stb 0.00 + 0.89 - 0.03 19 multi objective optimization, planning : s 68 ... 20 stabilizing, population protocols : s 62 stb 0... 21 linear systems, matrices : s 60 stb 0.40 + 0.7... 22 floating point : s 55 stb 0.00 + 0.80 - 0.00 23 belief propagation, traffic : s 53 stb 0.00 + ... 24 visual analytics : s 53 stb 0.00 + 0.87 - 0.01 dtype: object VALUE : 0.6466 --------- Raw Scores --------- 4_clustering scores: None ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score'] ================================ Run params : {} -------------------------------- Scoring params : {'6_pst__sname_list': ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score']} ================================ ----------- Scores ----------- 6_pst__final_score : 0.4058 --------- Desc Scores --------- 6_pst__final_score_det 0 2_nD__neighbors_articles_authors : 0.48 1 3_2D__neighbors_articles_authors : 0.43 2 4_clus__clu_score : 0.31 dtype: object VALUE : 0.4058 --------- Raw Scores --------- 6_post scores: None Finished running step! Running experiment for parameters: {'id': 'a588bce09630b37c4111', 'robustseed': 0, 'authors__filter_min_score': 4, 'filter_min_score': 6, 'projection_nD': {'key': 'lsa', 'num_dims': 50, 'extra_param': True}, 'projection_2D': {'key': 'umap', 'n_neighbors': 10, 'min_dist': 0.5, 'metric': 'euclidean'}} Matrices of type mat for articles, authors, teams, labs, words already exist. Skipping creation. Matrices of type lsa for articles, authors, teams, labs, words already exist. Skipping creation. ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 ================================ Run params : {} -------------------------------- Scoring params : {} ================================ ----------- Scores ----------- custom_score_lsa : 10.0000 --------- Desc Scores --------- --------- Raw Scores --------- custom scores: None ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42, '2_nD__sfactor': 10} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 2_nD__custom_score_lsa : 10.0000 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 2_projection_nD scores: None umap matrices generated. ================================ Run params : {'3_2D__rkey': 'umap', '3_2D__rmetric': 'euclidean', '3_2D__rn_neighbors': 10, '3_2D__rmin_dist': 0.5, '3_2D__rinit': 'random', '3_2D__rlearning_rate': 1.0, '3_2D__rn_epochs': None, '3_2D__rrandom_state': None} -------------------------------- Scoring params : {'3_2D__smin_score': 30, '3_2D__srecompute': True, '3_2D__ssample_size': None, '3_2D__sn_neighbors': 10, '3_2D__srandom_state': 42} ================================ ----------- Scores ----------- 3_2D__neighbors_articles_authors : 0.4078 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean : -0.0701 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median : -0.0662 --------- Desc Scores --------- 3_2D__neighbors_articles_authors_det 0 Céline Gicquel : 0.63 1 Nikolaus Hansen : 0.61 2 Yann Ponty : 0.60 3 Sébastien Tixeuil : 0.59 4 Loïc Paulevé : 0.55 5 Dimo Brockhoff : 0.55 6 Cyril Furtlehner : 0.54 7 Nicolas Bredeche : 0.52 8 Raymond Ros : 0.52 9 Anne Auger : 0.52 10 Albert Cohen : 0.52 11 Philippe Caillou : 0.51 12 Paola Tubaro : 0.51 13 Olivier Teytaud : 0.51 14 Isabelle Guyon : 0.51 15 Guillaume Melquiond : 0.50 16 Chantal Reynaud : 0.47 17 Sarah Cohen-Boulakia : 0.45 18 Marc Baboulin : 0.45 19 Tobias Isenberg : 0.45 20 Sylvie Boldo : 0.45 21 Nathalie Pernelle : 0.45 22 Fatiha Saïs : 0.44 23 Nathann Cohen : 0.42 24 Franck Cappello : 0.41 25 Marc Schoenauer : 0.39 26 Lonni Besançon : 0.39 27 Ioana Manolescu : 0.39 28 Guillaume Charpiat : 0.39 29 Fatiha Zaidi : 0.37 30 Jean-Daniel Fekete : 0.37 31 Claude Marché : 0.36 32 Michèle Sebag : 0.35 33 Petra Isenberg : 0.33 34 Olivier Chapuis : 0.33 35 François Goasdoué : 0.31 36 Alain Denise : 0.31 37 Steven Martin : 0.30 38 Pierre Dragicevic : 0.27 39 Anastasia Bezerianos : 0.26 40 Michel Beaudouin-Lafon : 0.26 41 Wendy Mackay : 0.25 42 Johanne Cohen : 0.25 43 Caroline Appert : 0.23 44 Wendy E. Mackay : 0.22 45 Emmanuel Pietriga : 0.21 46 Evelyne Lutton : 0.20 47 Balázs Kégl : 0.19 dtype: object VALUE : 0.4078 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_det 0 Céline Gicquel : -0.19 1 Loïc Paulevé : -0.17 2 Philippe Caillou : -0.16 3 Petra Isenberg : -0.15 4 Guillaume Charpiat : -0.14 5 Raymond Ros : -0.13 6 Cyril Furtlehner : -0.13 7 Sarah Cohen-Boulakia : -0.13 8 François Goasdoué : -0.12 9 Ioana Manolescu : -0.12 10 Isabelle Guyon : -0.12 11 Claude Marché : -0.11 12 Lonni Besançon : -0.10 13 Balázs Kégl : -0.10 14 Sébastien Tixeuil : -0.09 15 Paola Tubaro : -0.09 16 Marc Baboulin : -0.09 17 Tobias Isenberg : -0.08 18 Nikolaus Hansen : -0.08 19 Evelyne Lutton : -0.08 20 Franck Cappello : -0.07 21 Jean-Daniel Fekete : -0.07 22 Fatiha Saïs : -0.07 23 Anne Auger : -0.07 24 Dimo Brockhoff : -0.06 25 Anastasia Bezerianos : -0.06 26 Steven Martin : -0.06 27 Olivier Teytaud : -0.06 28 Marc Schoenauer : -0.05 29 Olivier Chapuis : -0.05 30 Wendy Mackay : -0.05 31 Emmanuel Pietriga : -0.05 32 Chantal Reynaud : -0.04 33 Pierre Dragicevic : -0.04 34 Michel Beaudouin-Lafon : -0.04 35 Caroline Appert : -0.04 36 Michèle Sebag : -0.04 37 Sylvie Boldo : -0.04 38 Nathalie Pernelle : -0.04 39 Johanne Cohen : -0.03 40 Fatiha Zaidi : -0.02 41 Nicolas Bredeche : -0.02 42 Albert Cohen : -0.01 43 Alain Denise : 0.01 44 Yann Ponty : 0.01 45 Wendy E. Mackay : 0.02 46 Guillaume Melquiond : 0.03 47 Nathann Cohen : 0.04 dtype: object VALUE : -0.0701 --------- Raw Scores --------- 3_2D__neighbors_articles_authors Sébastien Tixeuil 0.587234 Michèle Sebag 0.345255 Johanne Cohen 0.246512 Albert Cohen 0.520690 Wendy E. Mackay 0.217391 Philippe Caillou 0.513953 Alain Denise 0.305556 Jean-Daniel Fekete 0.366038 Emmanuel Pietriga 0.212698 Yann Ponty 0.595455 Marc Schoenauer 0.389209 Franck Cappello 0.407317 Caroline Appert 0.234783 Michel Beaudouin-Lafon 0.256790 Wendy Mackay 0.248936 Anne Auger 0.522785 Evelyne Lutton 0.197297 Pierre Dragicevic 0.274074 Ioana Manolescu 0.387805 Nikolaus Hansen 0.607407 Nicolas Bredeche 0.523529 Olivier Teytaud 0.510377 François Goasdoué 0.305660 Nathalie Pernelle 0.447059 Fatiha Saïs 0.436585 Sarah Cohen-Boulakia 0.454545 Claude Marché 0.359574 Chantal Reynaud 0.470000 Olivier Chapuis 0.330769 Steven Martin 0.297436 Fatiha Zaidi 0.368750 Balázs Kégl 0.189474 Paola Tubaro 0.512821 Raymond Ros 0.523529 Cyril Furtlehner 0.535897 Anastasia Bezerianos 0.258209 Sylvie Boldo 0.451429 Guillaume Melquiond 0.500000 Marc Baboulin 0.453333 Dimo Brockhoff 0.546154 Nathann Cohen 0.417073 Petra Isenberg 0.330841 Tobias Isenberg 0.452137 Loïc Paulevé 0.554762 Céline Gicquel 0.626316 Isabelle Guyon 0.505618 Guillaume Charpiat 0.387097 Lonni Besançon 0.387879 dtype: float64 3_2D__2_nD_3_2D_neighbors_articles_authors_dim 2_nD__neighbors_articles_authors \ Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 3_2D__neighbors_articles_authors scdec Sébastien Tixeuil 0.587234 -0.093617 Michèle Sebag 0.345255 -0.038686 Johanne Cohen 0.246512 -0.025581 Albert Cohen 0.520690 -0.008621 Wendy E. Mackay 0.217391 0.017391 Philippe Caillou 0.513953 -0.160465 Alain Denise 0.305556 0.008333 Jean-Daniel Fekete 0.366038 -0.071069 Emmanuel Pietriga 0.212698 -0.047619 Yann Ponty 0.595455 0.009091 Marc Schoenauer 0.389209 -0.053957 Franck Cappello 0.407317 -0.073171 Caroline Appert 0.234783 -0.039130 Michel Beaudouin-Lafon 0.256790 -0.040741 Wendy Mackay 0.248936 -0.053191 Anne Auger 0.522785 -0.068354 Evelyne Lutton 0.197297 -0.075676 Pierre Dragicevic 0.274074 -0.043210 Ioana Manolescu 0.387805 -0.119512 Nikolaus Hansen 0.607407 -0.079012 Nicolas Bredeche 0.523529 -0.020588 Olivier Teytaud 0.510377 -0.057547 François Goasdoué 0.305660 -0.124528 Nathalie Pernelle 0.447059 -0.035294 Fatiha Saïs 0.436585 -0.070732 Sarah Cohen-Boulakia 0.454545 -0.127273 Claude Marché 0.359574 -0.106383 Chantal Reynaud 0.470000 -0.043333 Olivier Chapuis 0.330769 -0.053846 Steven Martin 0.297436 -0.058974 Fatiha Zaidi 0.368750 -0.021875 Balázs Kégl 0.189474 -0.097368 Paola Tubaro 0.512821 -0.089744 Raymond Ros 0.523529 -0.132353 Cyril Furtlehner 0.535897 -0.130769 Anastasia Bezerianos 0.258209 -0.061194 Sylvie Boldo 0.451429 -0.037143 Guillaume Melquiond 0.500000 0.027273 Marc Baboulin 0.453333 -0.086667 Dimo Brockhoff 0.546154 -0.064103 Nathann Cohen 0.417073 0.036585 Petra Isenberg 0.330841 -0.148598 Tobias Isenberg 0.452137 -0.084615 Loïc Paulevé 0.554762 -0.171429 Céline Gicquel 0.626316 -0.192105 Isabelle Guyon 0.505618 -0.117978 Guillaume Charpiat 0.387097 -0.135484 Lonni Besançon 0.387879 -0.100000 3_projection_2D scores: None Nothing in cache, initial Fitting with min_cluster_size=15 Found 53 clusters in 0.28661163699871395s Max Fitting with min_cluster_size=30 Found 35 clusters in 0.10271434999958728s Max Fitting with min_cluster_size=60 Found 4 clusters in 0.10759418200177606s Midpoint Fitting with min_cluster_size=45 Found 17 clusters in 0.10179101500034449s Midpoint Fitting with min_cluster_size=52 Found 4 clusters in 0.10810460799984867s Re-Fitting with min_cluster_size=45 Found 17 clusters in 0.10246682100114413s Clusters cached: [4, 4, 17, 35, 53] Nothing in cache, initial Fitting with min_cluster_size=15 Found 53 clusters in 0.10724538099748315s Max Fitting with min_cluster_size=30 Found 35 clusters in 0.10228354599894374s Max Fitting with min_cluster_size=60 Found 4 clusters in 0.10733317900303518s Midpoint Fitting with min_cluster_size=45 Found 17 clusters in 0.10190187199987122s Midpoint Fitting with min_cluster_size=37 Found 27 clusters in 0.1012505369981227s No need Re-Fitting with min_cluster_size=37 Clusters cached: [4, 17, 27, 35, 53] ================================ Run params : {'4_clus__rkey': 'hdbscan', '4_clus__rbase_factor': 3} -------------------------------- Scoring params : {'4_clus__siter_stab': 2, '4_clus__sremove_stab': [0, 0.01, 0.03, 0.1, 0.25], '4_clus__smetric': 'euclidean', '4_clus__srandom_state': None} ================================ ----------- Scores ----------- 4_clus__nb_clust_0 : 8.0000 4_clus__silhouette_0 : -0.0402 4_clus__avg_word_couv_0 : 0.7029 4_clus__med_word_couv_0 : 0.7241 4_clus__avg_word_couv_minus_0 : 0.6734 4_clus__big_small_ratio_0 : 35.2500 4_clus__stab_clus_0 : 0.0059 4_clus__nb_clust_1 : 24.0000 4_clus__silhouette_1 : -0.1014 4_clus__avg_word_couv_1 : 0.6133 4_clus__med_word_couv_1 : 0.6122 4_clus__avg_word_couv_minus_1 : 0.5932 4_clus__big_small_ratio_1 : 54.0000 4_clus__stab_clus_1 : 0.0074 4_clus__avg_stab_avg : 0.0066 4_clus__avg_couv_avg : 0.6581 4_clus__clu_score : 0.3324 --------- Desc Scores --------- 4_clus__clus_eval_pos_0_det 0 networking internet architecture, ontology : s... 1 visualizations, interfaces : s 607 stb 0.10 + ... 2 biological, metabolic : s 147 stb 0.00 + 0.45 ... 3 compiler, optimizations : s 98 stb 0.00 + 0.65... 4 logic science, verification : s 97 stb 0.00 + ... 5 fluid, numerical simulations : s 95 stb 0.00 +... 6 vertex, minimum : s 94 stb 0.00 + 0.66 - 0.03 7 secondary structure, sequence : s 90 stb 0.00 ... 8 query : s 82 stb 0.00 + 0.99 - 0.03 9 testing, challenge : s 81 stb 0.00 + 0.80 - 0.06 10 monte carlo, games : s 77 stb 0.00 + 0.95 - 0.02 11 multi armed, adaptive : s 76 stb 0.00 + 0.84 -... 12 semantics, neural networks : s 62 stb 0.00 + 0... 13 trees, combinatorics : s 62 stb 0.00 + 0.71 - ... 14 multi objective, gradient : s 58 stb 0.00 + 0.... 15 integer, lower bounds : s 50 stb 0.00 + 0.64 -... 16 floating point : s 48 stb 0.00 + 0.85 - 0.00 dtype: object VALUE : 0.7029 4_clus__clus_eval_pos_1_det 0 humanities social sciences, ontologies : s 409... 1 systems biology, metabolism : s 147 stb 0.00 +... 2 information visualization, cognitive science :... 3 architectures, polyhedral : s 98 stb 0.00 + 0.... 4 deductive, safety : s 97 stb 0.00 + 0.68 - 0.02 5 mechanics, flows : s 95 stb 0.00 + 0.57 - 0.02 6 vertices, computational complexity : s 94 stb ... 7 tangible, creative : s 91 stb 0.00 + 0.49 - 0.01 8 secondary, sequences : s 90 stb 0.00 + 0.69 - ... 9 internet architecture, simulation results : s ... 10 queries, query answers : s 82 stb 0.00 + 0.72 ... 11 conformance, automated machine learning : s 81... 12 monte carlo search, players : s 77 stb 0.00 + ... 13 multi armed bandit, multi armed bandits : s 76... 14 cloud, services : s 70 stb 0.00 + 0.69 - 0.04 15 calculus, object oriented : s 62 stb 0.00 + 0.... 16 lattice, binary trees : s 62 stb 0.00 + 0.47 -... 17 multi objective optimization, stochastic gradi... 18 movement, spatial : s 52 stb 0.10 + 0.60 - 0.04 19 linear programming, bounds : s 50 stb 0.00 + 0... 20 floating point arithmetic, floating : s 48 stb... 21 visual analytics : s 44 stb 0.00 + 0.86 - 0.01 22 benchmarking : s 43 stb 0.00 + 0.86 - 0.01 23 energy, materialized views : s 41 stb 0.10 + 0... 24 scientific, provenance : s 39 stb 0.00 + 0.92 ... 25 image : s 39 stb 0.00 + 0.92 - 0.02 26 protein : s 37 stb 0.00 + 0.89 - 0.01 dtype: object VALUE : 0.6133 --------- Raw Scores --------- 4_clustering scores: None ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score'] ================================ Run params : {} -------------------------------- Scoring params : {'6_pst__sname_list': ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score']} ================================ ----------- Scores ----------- 6_pst__final_score : 0.4060 --------- Desc Scores --------- 6_pst__final_score_det 0 2_nD__neighbors_articles_authors : 0.48 1 3_2D__neighbors_articles_authors : 0.41 2 4_clus__clu_score : 0.33 dtype: object VALUE : 0.4060 --------- Raw Scores --------- 6_post scores: None Finished running step! .. GENERATED FROM PYTHON SOURCE LINES 406-407 When the experiment is run, results of all runs is saved in `experiment.results`. We access the values corresponding to each run with `experiment.results.runs_`. .. GENERATED FROM PYTHON SOURCE LINES 407-425 .. code-block:: Python experiment.results.runs_[0].scores "" list(experiment.results.runs_[0].desc_scores.keys()) "" experiment.results.runs_[0].desc_scores "" list(experiment.results.runs_[0].raw_scores.keys()) "" experiment.results.runs_[0].raw_scores "" results.print_best(n=20) .. rst-class:: sphx-glr-script-out .. code-block:: none ------------------------ Best 20 results: ------------------------ 0_agscore id 2_nD__rkey 2_nD__rnum_dims \ 0 0.426323 68d289ffd85ae917e710 lsa 50 2 0.406000 a588bce09630b37c4111 lsa 50 1 0.405798 ce1c0d334fc75a6570a5 lsa 50 2_nD__rnormalize 2_nD__rextra_param 3_2D__rkey 3_2D__rmetric \ 0 True True umap euclidean 2 True True umap euclidean 1 True True umap euclidean 3_2D__rn_neighbors 3_2D__rmin_dist 3_2D__rinit 3_2D__rlearning_rate \ 0 10 0.10 random 1.0 2 10 0.50 random 1.0 1 10 0.25 random 1.0 3_2D__rn_epochs 3_2D__rrandom_state 4_clus__rkey 4_clus__rbase_factor \ 0 None None hdbscan 3 2 None None hdbscan 3 1 None None hdbscan 3 2_nD__smin_score 2_nD__srecompute 2_nD__ssample_size 2_nD__sn_neighbors \ 0 30 True None 10 2 30 True None 10 1 30 True None 10 2_nD__srandom_state 2_nD__sfactor 3_2D__smin_score 3_2D__srecompute \ 0 42 10 30 True 2 42 10 30 True 1 42 10 30 True 3_2D__ssample_size 3_2D__sn_neighbors 3_2D__srandom_state \ 0 None 10 42 2 None 10 42 1 None 10 42 4_clus__siter_stab 4_clus__sremove_stab 4_clus__smetric \ 0 2 [0, 0.01, 0.03, 0.1, 0.25] euclidean 2 2 [0, 0.01, 0.03, 0.1, 0.25] euclidean 1 2 [0, 0.01, 0.03, 0.1, 0.25] euclidean 4_clus__srandom_state 6_pst__sname_list \ 0 None [2_nD__neighbors_articles_authors, 3_2D__neigh... 2 None [2_nD__neighbors_articles_authors, 3_2D__neigh... 1 None [2_nD__neighbors_articles_authors, 3_2D__neigh... 2_nD__neighbors_articles_authors 2_nD__custom_score_lsa \ 0 0.477852 10 2 0.477852 10 1 0.477852 10 3_2D__neighbors_articles_authors \ 0 0.432393 2 0.407792 1 0.425460 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean \ 0 -0.045459 2 -0.070060 1 -0.052393 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median 4_clus__nb_clust_0 \ 0 -0.044640 8 2 -0.066228 8 1 -0.046651 8 4_clus__silhouette_0 4_clus__avg_word_couv_0 4_clus__med_word_couv_0 \ 0 0.160530 0.443784 0.465649 2 -0.040228 0.702874 0.724138 1 -0.054422 0.517312 0.537415 4_clus__avg_word_couv_minus_0 4_clus__big_small_ratio_0 \ 0 0.414292 6.209424 2 0.673413 35.250000 1 0.488406 14.324561 4_clus__stab_clus_0 4_clus__nb_clust_1 4_clus__silhouette_1 \ 0 0.233333 24 0.247894 2 0.005882 24 -0.101386 1 0.044444 24 0.056935 4_clus__avg_word_couv_1 4_clus__med_word_couv_1 \ 0 0.625363 0.604839 2 0.613262 0.612245 1 0.646574 0.696078 4_clus__avg_word_couv_minus_1 4_clus__big_small_ratio_1 \ 0 0.602092 16.894737 2 0.593190 54.000000 1 0.620567 26.283019 4_clus__stab_clus_1 4_clus__avg_stab_avg 4_clus__avg_couv_avg \ 0 0.172414 0.202874 0.534574 2 0.007407 0.006645 0.658068 1 0.048000 0.046222 0.581943 4_clus__clu_score 6_pst__final_score \ 0 0.368724 0.426323 2 0.332356 0.406000 1 0.314082 0.405798 dump active 0 experiment_custom/lisn/2022.11.15.1/0/mat_arti... True 2 experiment_custom/lisn/2022.11.15.1/0/mat_arti... True 1 experiment_custom/lisn/2022.11.15.1/0/mat_arti... True .. GENERATED FROM PYTHON SOURCE LINES 426-429 Let's see some of the results of the experiment from the file system. We will first check the contents of the `scores` directory. .. GENERATED FROM PYTHON SOURCE LINES 429-432 .. code-block:: Python # !ls $TOP_DIR/scores .. GENERATED FROM PYTHON SOURCE LINES 433-434 `6_pst__final_scores.csv` file contains the final scores for each set of parameters together with the parameter values. We had 3 runs, so there are 3 values. .. GENERATED FROM PYTHON SOURCE LINES 434-437 .. code-block:: Python # !cat $TOP_DIR/scores/6_pst__final_score.csv .. GENERATED FROM PYTHON SOURCE LINES 438-439 The `final_results.csv` displays each score calculated during the experiment in separate columns together with `rank` and an aggregated score `agscore`. This value is the same as the value in `6_post__final_score.csv` file. .. GENERATED FROM PYTHON SOURCE LINES 439-442 .. code-block:: Python # !cat $TOP_DIR/scores/final_results.csv .. GENERATED FROM PYTHON SOURCE LINES 443-444 The other files in the directory contains the single score calculated for all runs. For example `2_nD__neighbors_articles_authors.csv` file contains the `2_nD__neighbors_articles_authors` scores for 3 runs. .. GENERATED FROM PYTHON SOURCE LINES 444-447 .. code-block:: Python # !cat $TOP_DIR/scores/2_nD__neighbors_articles_authors.csv .. GENERATED FROM PYTHON SOURCE LINES 448-449 The files that contain `det` in theirs names, contains the neighbors and their scores used to calculate the score `2_nD__neighbors_articles_authors` for each run. .. GENERATED FROM PYTHON SOURCE LINES 449-452 .. code-block:: Python # !cat $TOP_DIR/scores/2_nD__neighbors_articles_authors_det.csv .. GENERATED FROM PYTHON SOURCE LINES 453-456 These files also reside in the hierarchical dataset directories generated during the run. For example `experiment_custom/lisn/2022.11.15.1/0/mat_articles__authors_4_teams_4_labs_4_words_10_0.05_None_None_5_4/lsa_50_True_True/scores_2_nD__neighbors_articles_authors_det.csv` file, but only for the specific run together with hyperparameters and scoring parameters. .. GENERATED FROM PYTHON SOURCE LINES 456-459 .. code-block:: Python # !cat $TOP_DIR/lisn/2022.11.15.1/0/mat_articles__authors_4_teams_4_labs_4_words_10_0.05_None_None_5_4/lsa_50_True_True/scores_2_nD__neighbors_articles_authors_det.csv .. GENERATED FROM PYTHON SOURCE LINES 460-465 Actually for each set of parameters, the estimator generates a directory structure of the form: `top_dir / dataset / dataset_version / robustseed / dataset_column_parameters / projection_nd_key_dim / projection2D_key_n_neighbors_min_dist_metric_init_learning_rate_repulsion_strength / clustering_key_base_factor`. Each score calculated at a certain level in the directory structure is saved in that directory. .. GENERATED FROM PYTHON SOURCE LINES 467-468 Now, we will continue the experiment to run for 3 more set of parameters. .. GENERATED FROM PYTHON SOURCE LINES 468-471 .. code-block:: Python experiment.run(3) .. rst-class:: sphx-glr-script-out .. code-block:: none Running experiment for parameters: {'id': '06128c38fd13123e263c', 'robustseed': 0, 'authors__filter_min_score': 4, 'filter_min_score': 6, 'projection_nD': {'key': 'lsa', 'num_dims': 50, 'extra_param': True}, 'projection_2D': {'key': 'umap', 'n_neighbors': 20, 'min_dist': 0.1, 'metric': 'euclidean'}} Matrices of type mat for articles, authors, teams, labs, words already exist. Skipping creation. Matrices of type lsa for articles, authors, teams, labs, words already exist. Skipping creation. ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 ================================ Run params : {} -------------------------------- Scoring params : {} ================================ ----------- Scores ----------- custom_score_lsa : 10.0000 --------- Desc Scores --------- --------- Raw Scores --------- custom scores: None ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42, '2_nD__sfactor': 10} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 2_nD__custom_score_lsa : 10.0000 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 2_projection_nD scores: None umap matrices generated. ================================ Run params : {'3_2D__rkey': 'umap', '3_2D__rmetric': 'euclidean', '3_2D__rn_neighbors': 20, '3_2D__rmin_dist': 0.1, '3_2D__rinit': 'random', '3_2D__rlearning_rate': 1.0, '3_2D__rn_epochs': None, '3_2D__rrandom_state': None} -------------------------------- Scoring params : {'3_2D__smin_score': 30, '3_2D__srecompute': True, '3_2D__ssample_size': None, '3_2D__sn_neighbors': 10, '3_2D__srandom_state': 42} ================================ ----------- Scores ----------- 3_2D__neighbors_articles_authors : 0.4228 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean : -0.0551 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median : -0.0494 --------- Desc Scores --------- 3_2D__neighbors_articles_authors_det 0 Loïc Paulevé : 0.71 1 Céline Gicquel : 0.65 2 Cyril Furtlehner : 0.61 3 Dimo Brockhoff : 0.60 4 Nikolaus Hansen : 0.60 5 Isabelle Guyon : 0.59 6 Philippe Caillou : 0.59 7 Sébastien Tixeuil : 0.58 8 Raymond Ros : 0.56 9 Yann Ponty : 0.55 10 Tobias Isenberg : 0.54 11 Olivier Teytaud : 0.54 12 Anne Auger : 0.51 13 Albert Cohen : 0.51 14 Marc Baboulin : 0.48 15 Ioana Manolescu : 0.47 16 Franck Cappello : 0.47 17 Nicolas Bredeche : 0.46 18 Fatiha Saïs : 0.45 19 Sylvie Boldo : 0.44 20 Nathalie Pernelle : 0.43 21 Guillaume Melquiond : 0.43 22 Paola Tubaro : 0.43 23 Chantal Reynaud : 0.42 24 Marc Schoenauer : 0.42 25 Jean-Daniel Fekete : 0.42 26 Nathann Cohen : 0.41 27 Claude Marché : 0.41 28 Fatiha Zaidi : 0.41 29 Sarah Cohen-Boulakia : 0.40 30 Lonni Besançon : 0.40 31 Petra Isenberg : 0.39 32 Michèle Sebag : 0.37 33 Guillaume Charpiat : 0.35 34 François Goasdoué : 0.34 35 Steven Martin : 0.34 36 Pierre Dragicevic : 0.32 37 Olivier Chapuis : 0.32 38 Michel Beaudouin-Lafon : 0.31 39 Alain Denise : 0.29 40 Anastasia Bezerianos : 0.29 41 Johanne Cohen : 0.22 42 Caroline Appert : 0.22 43 Wendy Mackay : 0.22 44 Emmanuel Pietriga : 0.22 45 Evelyne Lutton : 0.21 46 Wendy E. Mackay : 0.20 47 Balázs Kégl : 0.20 dtype: object VALUE : 0.4228 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_det 0 Sarah Cohen-Boulakia : -0.18 1 Paola Tubaro : -0.17 2 Guillaume Charpiat : -0.17 3 Céline Gicquel : -0.17 4 Sébastien Tixeuil : -0.10 5 Nikolaus Hansen : -0.09 6 Raymond Ros : -0.09 7 Petra Isenberg : -0.09 8 François Goasdoué : -0.09 9 Chantal Reynaud : -0.09 10 Balázs Kégl : -0.09 11 Philippe Caillou : -0.09 12 Lonni Besançon : -0.09 13 Anne Auger : -0.08 14 Wendy Mackay : -0.08 15 Nicolas Bredeche : -0.08 16 Evelyne Lutton : -0.06 17 Marc Baboulin : -0.06 18 Olivier Chapuis : -0.06 19 Cyril Furtlehner : -0.06 20 Claude Marché : -0.06 21 Fatiha Saïs : -0.05 22 Caroline Appert : -0.05 23 Nathalie Pernelle : -0.05 24 Johanne Cohen : -0.05 25 Sylvie Boldo : -0.05 26 Emmanuel Pietriga : -0.04 27 Guillaume Melquiond : -0.04 28 Ioana Manolescu : -0.04 29 Yann Ponty : -0.04 30 Isabelle Guyon : -0.03 31 Olivier Teytaud : -0.03 32 Anastasia Bezerianos : -0.03 33 Albert Cohen : -0.02 34 Steven Martin : -0.02 35 Marc Schoenauer : -0.02 36 Jean-Daniel Fekete : -0.02 37 Loïc Paulevé : -0.02 38 Franck Cappello : -0.01 39 Michèle Sebag : -0.01 40 Dimo Brockhoff : -0.01 41 Alain Denise : -0.00 42 Tobias Isenberg : 0.00 43 Wendy E. Mackay : 0.00 44 Pierre Dragicevic : 0.01 45 Michel Beaudouin-Lafon : 0.01 46 Fatiha Zaidi : 0.02 47 Nathann Cohen : 0.03 dtype: object VALUE : -0.0551 --------- Raw Scores --------- 3_2D__neighbors_articles_authors Sébastien Tixeuil 0.578723 Michèle Sebag 0.372263 Johanne Cohen 0.223256 Albert Cohen 0.505172 Wendy E. Mackay 0.204348 Philippe Caillou 0.586047 Alain Denise 0.294444 Jean-Daniel Fekete 0.417610 Emmanuel Pietriga 0.217460 Yann Ponty 0.546970 Marc Schoenauer 0.423022 Franck Cappello 0.465854 Caroline Appert 0.221739 Michel Beaudouin-Lafon 0.306173 Wendy Mackay 0.221277 Anne Auger 0.510127 Evelyne Lutton 0.208108 Pierre Dragicevic 0.324691 Ioana Manolescu 0.467073 Nikolaus Hansen 0.595062 Nicolas Bredeche 0.464706 Olivier Teytaud 0.535849 François Goasdoué 0.339623 Nathalie Pernelle 0.432353 Fatiha Saïs 0.453659 Sarah Cohen-Boulakia 0.403030 Claude Marché 0.408511 Chantal Reynaud 0.423333 Olivier Chapuis 0.323077 Steven Martin 0.335897 Fatiha Zaidi 0.406250 Balázs Kégl 0.197368 Paola Tubaro 0.428205 Raymond Ros 0.564706 Cyril Furtlehner 0.607692 Anastasia Bezerianos 0.292537 Sylvie Boldo 0.440000 Guillaume Melquiond 0.430303 Marc Baboulin 0.477778 Dimo Brockhoff 0.602564 Nathann Cohen 0.409756 Petra Isenberg 0.388785 Tobias Isenberg 0.536752 Loïc Paulevé 0.707143 Céline Gicquel 0.652632 Isabelle Guyon 0.588764 Guillaume Charpiat 0.351613 Lonni Besançon 0.400000 dtype: float64 3_2D__2_nD_3_2D_neighbors_articles_authors_dim 2_nD__neighbors_articles_authors \ Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 3_2D__neighbors_articles_authors scdec Sébastien Tixeuil 0.578723 -0.102128 Michèle Sebag 0.372263 -0.011679 Johanne Cohen 0.223256 -0.048837 Albert Cohen 0.505172 -0.024138 Wendy E. Mackay 0.204348 0.004348 Philippe Caillou 0.586047 -0.088372 Alain Denise 0.294444 -0.002778 Jean-Daniel Fekete 0.417610 -0.019497 Emmanuel Pietriga 0.217460 -0.042857 Yann Ponty 0.546970 -0.039394 Marc Schoenauer 0.423022 -0.020144 Franck Cappello 0.465854 -0.014634 Caroline Appert 0.221739 -0.052174 Michel Beaudouin-Lafon 0.306173 0.008642 Wendy Mackay 0.221277 -0.080851 Anne Auger 0.510127 -0.081013 Evelyne Lutton 0.208108 -0.064865 Pierre Dragicevic 0.324691 0.007407 Ioana Manolescu 0.467073 -0.040244 Nikolaus Hansen 0.595062 -0.091358 Nicolas Bredeche 0.464706 -0.079412 Olivier Teytaud 0.535849 -0.032075 François Goasdoué 0.339623 -0.090566 Nathalie Pernelle 0.432353 -0.050000 Fatiha Saïs 0.453659 -0.053659 Sarah Cohen-Boulakia 0.403030 -0.178788 Claude Marché 0.408511 -0.057447 Chantal Reynaud 0.423333 -0.090000 Olivier Chapuis 0.323077 -0.061538 Steven Martin 0.335897 -0.020513 Fatiha Zaidi 0.406250 0.015625 Balázs Kégl 0.197368 -0.089474 Paola Tubaro 0.428205 -0.174359 Raymond Ros 0.564706 -0.091176 Cyril Furtlehner 0.607692 -0.058974 Anastasia Bezerianos 0.292537 -0.026866 Sylvie Boldo 0.440000 -0.048571 Guillaume Melquiond 0.430303 -0.042424 Marc Baboulin 0.477778 -0.062222 Dimo Brockhoff 0.602564 -0.007692 Nathann Cohen 0.409756 0.029268 Petra Isenberg 0.388785 -0.090654 Tobias Isenberg 0.536752 0.000000 Loïc Paulevé 0.707143 -0.019048 Céline Gicquel 0.652632 -0.165789 Isabelle Guyon 0.588764 -0.034831 Guillaume Charpiat 0.351613 -0.170968 Lonni Besançon 0.400000 -0.087879 3_projection_2D scores: None Nothing in cache, initial Fitting with min_cluster_size=15 Found 78 clusters in 0.2512342800000624s Max Fitting with min_cluster_size=30 Found 52 clusters in 0.1034947119987919s Max Fitting with min_cluster_size=60 Found 23 clusters in 0.1068140620009217s Max Fitting with min_cluster_size=120 Found 3 clusters in 0.10146449500098242s Midpoint Fitting with min_cluster_size=90 Found 5 clusters in 0.10416944600001443s Midpoint Fitting with min_cluster_size=75 Found 18 clusters in 0.09905218700077967s Midpoint Fitting with min_cluster_size=82 Found 5 clusters in 0.09654392100128462s Re-Fitting with min_cluster_size=75 Found 18 clusters in 0.09632515700286604s Clusters cached: [3, 5, 5, 18, 23, 52, 78] Nothing in cache, initial Fitting with min_cluster_size=15 Found 78 clusters in 0.10544126700187917s Max Fitting with min_cluster_size=30 Found 52 clusters in 0.10392791900085285s Max Fitting with min_cluster_size=60 Found 23 clusters in 0.10288754399880418s Midpoint Fitting with min_cluster_size=45 Found 32 clusters in 0.09387680500003626s Midpoint Fitting with min_cluster_size=52 Found 30 clusters in 0.10210112799904891s No need Re-Fitting with min_cluster_size=52 Clusters cached: [23, 30, 32, 52, 78] ================================ Run params : {'4_clus__rkey': 'hdbscan', '4_clus__rbase_factor': 3} -------------------------------- Scoring params : {'4_clus__siter_stab': 2, '4_clus__sremove_stab': [0, 0.01, 0.03, 0.1, 0.25], '4_clus__smetric': 'euclidean', '4_clus__srandom_state': None} ================================ ----------- Scores ----------- 4_clus__nb_clust_0 : 8.0000 4_clus__silhouette_0 : 0.2633 4_clus__avg_word_couv_0 : 0.6128 4_clus__med_word_couv_0 : 0.5791 4_clus__avg_word_couv_minus_0 : 0.5838 4_clus__big_small_ratio_0 : 9.9200 4_clus__stab_clus_0 : 0.0667 4_clus__nb_clust_1 : 24.0000 4_clus__silhouette_1 : 0.3176 4_clus__avg_word_couv_1 : 0.5868 4_clus__med_word_couv_1 : 0.5507 4_clus__avg_word_couv_minus_1 : 0.5636 4_clus__big_small_ratio_1 : 13.7170 4_clus__stab_clus_1 : 0.0333 4_clus__avg_stab_avg : 0.0500 4_clus__avg_couv_avg : 0.5998 4_clus__clu_score : 0.3249 --------- Desc Scores --------- 4_clus__clus_eval_pos_0_det 0 visualizations, interfaces : s 535 stb 0.60 + ... 1 stochastic, neural networks : s 501 stb 0.00 +... 2 query, ontology : s 347 stb 0.20 + 0.57 - 0.03 3 logic science, semantics : s 225 stb 0.00 + 0.... 4 visual analytics, humanities social sciences :... 5 networking internet architecture, services : s... 6 architectures, programming languages : s 192 s... 7 biology, biological : s 191 stb 0.00 + 0.53 - ... 8 french, computation language : s 138 stb 0.00 ... 9 fluid, numerical simulations : s 130 stb 0.00 ... 10 vertices, minimum : s 129 stb 0.00 + 0.68 - 0.03 11 combinatorics, automata : s 126 stb 0.00 + 0.4... 12 image, motion : s 113 stb 0.00 + 0.77 - 0.03 13 floating point, benchmarking : s 108 stb 0.30 ... 14 secondary structure, sequence : s 99 stb 0.00 ... 15 cluster computing, cloud : s 97 stb 0.00 + 0.7... 16 agent, scientific : s 92 stb 0.00 + 0.85 - 0.05 17 monte carlo, games : s 75 stb 0.00 + 0.96 - 0.02 dtype: object VALUE : 0.6128 4_clus__clus_eval_pos_1_det 0 queries, ontologies : s 347 stb 0.00 + 0.48 - ... 1 verification, proof assistant : s 225 stb 0.00... 2 internet architecture, service : s 209 stb 0.0... 3 molecular, genes : s 191 stb 0.00 + 0.46 - 0.01 4 natural language, translation : s 138 stb 0.00... 5 display, pointing : s 137 stb 0.00 + 0.48 - 0.02 6 dynamics, mechanics : s 130 stb 0.00 + 0.62 - ... 7 social sciences, social networks : s 130 stb 0... 8 compiler, parallelism : s 130 stb 0.00 + 0.56 ... 9 inference, traffic : s 129 stb 0.00 + 0.50 - 0.03 10 discrete mathematics, vertex : s 129 stb 0.00 ... 11 finite, trees : s 126 stb 0.10 + 0.52 - 0.06 12 information visualization, cognitive science :... 13 image processing, vision pattern recognition :... 14 floating point arithmetic, black optimization ... 15 multi objective, neural network : s 104 stb 0.... 16 secondary, sampling : s 99 stb 0.00 + 0.72 - 0.03 17 fault, cloud computing : s 97 stb 0.00 + 0.64 ... 18 multi agent, scientific workflows : s 92 stb 0... 19 creative, musical : s 82 stb 0.00 + 0.48 - 0.01 20 optimization control, neural evolutionary comp... 21 virtual, augmented reality : s 77 stb 0.00 + 0... 22 monte carlo search, players : s 75 stb 0.00 + ... 23 testing, mining : s 74 stb 0.40 + 0.89 - 0.03 24 analytics : s 73 stb 0.00 + 0.84 - 0.01 25 stabilizing, population protocols : s 71 stb 0... 26 multi armed, discrete event systems : s 69 stb... 27 operations, mixed integer linear programming :... 28 linear systems, matrices : s 62 stb 0.00 + 0.7... 29 challenge, classification : s 53 stb 0.00 + 0.... dtype: object VALUE : 0.5868 --------- Raw Scores --------- 4_clustering scores: None ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score'] ================================ Run params : {} -------------------------------- Scoring params : {'6_pst__sname_list': ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score']} ================================ ----------- Scores ----------- 6_pst__final_score : 0.4085 --------- Desc Scores --------- 6_pst__final_score_det 0 2_nD__neighbors_articles_authors : 0.48 1 3_2D__neighbors_articles_authors : 0.42 2 4_clus__clu_score : 0.32 dtype: object VALUE : 0.4085 --------- Raw Scores --------- 6_post scores: None Finished running step! Running experiment for parameters: {'id': '1040be9e44c8ab04aa0e', 'robustseed': 0, 'authors__filter_min_score': 4, 'filter_min_score': 6, 'projection_nD': {'key': 'lsa', 'num_dims': 50, 'extra_param': True}, 'projection_2D': {'key': 'umap', 'n_neighbors': 20, 'min_dist': 0.25, 'metric': 'euclidean'}} Matrices of type mat for articles, authors, teams, labs, words already exist. Skipping creation. Matrices of type lsa for articles, authors, teams, labs, words already exist. Skipping creation. ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 ================================ Run params : {} -------------------------------- Scoring params : {} ================================ ----------- Scores ----------- custom_score_lsa : 10.0000 --------- Desc Scores --------- --------- Raw Scores --------- custom scores: None ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42, '2_nD__sfactor': 10} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 2_nD__custom_score_lsa : 10.0000 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 2_projection_nD scores: None umap matrices generated. ================================ Run params : {'3_2D__rkey': 'umap', '3_2D__rmetric': 'euclidean', '3_2D__rn_neighbors': 20, '3_2D__rmin_dist': 0.25, '3_2D__rinit': 'random', '3_2D__rlearning_rate': 1.0, '3_2D__rn_epochs': None, '3_2D__rrandom_state': None} -------------------------------- Scoring params : {'3_2D__smin_score': 30, '3_2D__srecompute': True, '3_2D__ssample_size': None, '3_2D__sn_neighbors': 10, '3_2D__srandom_state': 42} ================================ ----------- Scores ----------- 3_2D__neighbors_articles_authors : 0.4156 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean : -0.0623 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median : -0.0483 --------- Desc Scores --------- 3_2D__neighbors_articles_authors_det 0 Loïc Paulevé : 0.68 1 Céline Gicquel : 0.67 2 Philippe Caillou : 0.60 3 Cyril Furtlehner : 0.60 4 Nikolaus Hansen : 0.59 5 Sébastien Tixeuil : 0.59 6 Yann Ponty : 0.57 7 Tobias Isenberg : 0.52 8 Dimo Brockhoff : 0.52 9 Isabelle Guyon : 0.51 10 Raymond Ros : 0.50 11 Albert Cohen : 0.50 12 Anne Auger : 0.49 13 Olivier Teytaud : 0.49 14 Nathalie Pernelle : 0.49 15 Paola Tubaro : 0.48 16 Guillaume Melquiond : 0.48 17 Franck Cappello : 0.48 18 Nicolas Bredeche : 0.47 19 Marc Baboulin : 0.46 20 Fatiha Saïs : 0.46 21 Sylvie Boldo : 0.45 22 Chantal Reynaud : 0.43 23 Claude Marché : 0.43 24 Ioana Manolescu : 0.42 25 Lonni Besançon : 0.42 26 Sarah Cohen-Boulakia : 0.41 27 Marc Schoenauer : 0.40 28 Jean-Daniel Fekete : 0.39 29 Nathann Cohen : 0.38 30 Steven Martin : 0.37 31 Petra Isenberg : 0.36 32 Michèle Sebag : 0.35 33 Fatiha Zaidi : 0.34 34 Olivier Chapuis : 0.33 35 Guillaume Charpiat : 0.33 36 François Goasdoué : 0.30 37 Anastasia Bezerianos : 0.29 38 Pierre Dragicevic : 0.28 39 Michel Beaudouin-Lafon : 0.28 40 Johanne Cohen : 0.26 41 Alain Denise : 0.25 42 Caroline Appert : 0.24 43 Evelyne Lutton : 0.23 44 Emmanuel Pietriga : 0.22 45 Balázs Kégl : 0.22 46 Wendy Mackay : 0.21 47 Wendy E. Mackay : 0.20 dtype: object VALUE : 0.4156 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_det 0 Guillaume Charpiat : -0.20 1 Sarah Cohen-Boulakia : -0.17 2 Raymond Ros : -0.15 3 Céline Gicquel : -0.15 4 François Goasdoué : -0.13 5 Paola Tubaro : -0.12 6 Isabelle Guyon : -0.12 7 Petra Isenberg : -0.12 8 Nikolaus Hansen : -0.10 9 Anne Auger : -0.10 10 Dimo Brockhoff : -0.09 11 Sébastien Tixeuil : -0.09 12 Wendy Mackay : -0.09 13 Ioana Manolescu : -0.08 14 Chantal Reynaud : -0.08 15 Olivier Teytaud : -0.08 16 Philippe Caillou : -0.08 17 Marc Baboulin : -0.08 18 Nicolas Bredeche : -0.07 19 Cyril Furtlehner : -0.07 20 Balázs Kégl : -0.07 21 Lonni Besançon : -0.07 22 Olivier Chapuis : -0.05 23 Fatiha Saïs : -0.05 24 Jean-Daniel Fekete : -0.05 25 Fatiha Zaidi : -0.05 26 Marc Schoenauer : -0.05 27 Alain Denise : -0.04 28 Loïc Paulevé : -0.04 29 Sylvie Boldo : -0.04 30 Evelyne Lutton : -0.04 31 Caroline Appert : -0.04 32 Emmanuel Pietriga : -0.04 33 Claude Marché : -0.04 34 Pierre Dragicevic : -0.03 35 Albert Cohen : -0.03 36 Michèle Sebag : -0.03 37 Anastasia Bezerianos : -0.03 38 Tobias Isenberg : -0.02 39 Johanne Cohen : -0.02 40 Michel Beaudouin-Lafon : -0.01 41 Yann Ponty : -0.01 42 Nathann Cohen : -0.00 43 Franck Cappello : -0.00 44 Wendy E. Mackay : 0.00 45 Nathalie Pernelle : 0.00 46 Guillaume Melquiond : 0.01 47 Steven Martin : 0.01 dtype: object VALUE : -0.0623 --------- Raw Scores --------- 3_2D__neighbors_articles_authors Sébastien Tixeuil 0.589362 Michèle Sebag 0.352555 Johanne Cohen 0.255814 Albert Cohen 0.496552 Wendy E. Mackay 0.202174 Philippe Caillou 0.597674 Alain Denise 0.252778 Jean-Daniel Fekete 0.389308 Emmanuel Pietriga 0.223810 Yann Ponty 0.574242 Marc Schoenauer 0.397122 Franck Cappello 0.478049 Caroline Appert 0.236957 Michel Beaudouin-Lafon 0.282716 Wendy Mackay 0.212766 Anne Auger 0.494937 Evelyne Lutton 0.232432 Pierre Dragicevic 0.283951 Ioana Manolescu 0.423171 Nikolaus Hansen 0.590123 Nicolas Bredeche 0.473529 Olivier Teytaud 0.488679 François Goasdoué 0.301887 Nathalie Pernelle 0.485294 Fatiha Saïs 0.458537 Sarah Cohen-Boulakia 0.409091 Claude Marché 0.429787 Chantal Reynaud 0.433333 Olivier Chapuis 0.334615 Steven Martin 0.366667 Fatiha Zaidi 0.343750 Balázs Kégl 0.218421 Paola Tubaro 0.482051 Raymond Ros 0.502941 Cyril Furtlehner 0.597436 Anastasia Bezerianos 0.289552 Sylvie Boldo 0.445714 Guillaume Melquiond 0.478788 Marc Baboulin 0.464444 Dimo Brockhoff 0.515385 Nathann Cohen 0.375610 Petra Isenberg 0.363551 Tobias Isenberg 0.517094 Loïc Paulevé 0.683333 Céline Gicquel 0.668421 Isabelle Guyon 0.505618 Guillaume Charpiat 0.325806 Lonni Besançon 0.421212 dtype: float64 3_2D__2_nD_3_2D_neighbors_articles_authors_dim 2_nD__neighbors_articles_authors \ Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 3_2D__neighbors_articles_authors scdec Sébastien Tixeuil 0.589362 -0.091489 Michèle Sebag 0.352555 -0.031387 Johanne Cohen 0.255814 -0.016279 Albert Cohen 0.496552 -0.032759 Wendy E. Mackay 0.202174 0.002174 Philippe Caillou 0.597674 -0.076744 Alain Denise 0.252778 -0.044444 Jean-Daniel Fekete 0.389308 -0.047799 Emmanuel Pietriga 0.223810 -0.036508 Yann Ponty 0.574242 -0.012121 Marc Schoenauer 0.397122 -0.046043 Franck Cappello 0.478049 -0.002439 Caroline Appert 0.236957 -0.036957 Michel Beaudouin-Lafon 0.282716 -0.014815 Wendy Mackay 0.212766 -0.089362 Anne Auger 0.494937 -0.096203 Evelyne Lutton 0.232432 -0.040541 Pierre Dragicevic 0.283951 -0.033333 Ioana Manolescu 0.423171 -0.084146 Nikolaus Hansen 0.590123 -0.096296 Nicolas Bredeche 0.473529 -0.070588 Olivier Teytaud 0.488679 -0.079245 François Goasdoué 0.301887 -0.128302 Nathalie Pernelle 0.485294 0.002941 Fatiha Saïs 0.458537 -0.048780 Sarah Cohen-Boulakia 0.409091 -0.172727 Claude Marché 0.429787 -0.036170 Chantal Reynaud 0.433333 -0.080000 Olivier Chapuis 0.334615 -0.050000 Steven Martin 0.366667 0.010256 Fatiha Zaidi 0.343750 -0.046875 Balázs Kégl 0.218421 -0.068421 Paola Tubaro 0.482051 -0.120513 Raymond Ros 0.502941 -0.152941 Cyril Furtlehner 0.597436 -0.069231 Anastasia Bezerianos 0.289552 -0.029851 Sylvie Boldo 0.445714 -0.042857 Guillaume Melquiond 0.478788 0.006061 Marc Baboulin 0.464444 -0.075556 Dimo Brockhoff 0.515385 -0.094872 Nathann Cohen 0.375610 -0.004878 Petra Isenberg 0.363551 -0.115888 Tobias Isenberg 0.517094 -0.019658 Loïc Paulevé 0.683333 -0.042857 Céline Gicquel 0.668421 -0.150000 Isabelle Guyon 0.505618 -0.117978 Guillaume Charpiat 0.325806 -0.196774 Lonni Besançon 0.421212 -0.066667 3_projection_2D scores: None Nothing in cache, initial Fitting with min_cluster_size=15 Found 68 clusters in 0.28237541199996485s Max Fitting with min_cluster_size=30 Found 47 clusters in 0.10517458799949964s Max Fitting with min_cluster_size=60 Found 23 clusters in 0.10227592600131175s Max Fitting with min_cluster_size=120 Found 8 clusters in 0.09809423800106742s No need Re-Fitting with min_cluster_size=120 Clusters cached: [8, 23, 47, 68] Nothing in cache, initial Fitting with min_cluster_size=15 Found 68 clusters in 0.09952020899800118s Max Fitting with min_cluster_size=30 Found 47 clusters in 0.10086908200173639s Max Fitting with min_cluster_size=60 Found 23 clusters in 0.10139435800010688s Midpoint Fitting with min_cluster_size=45 Found 29 clusters in 0.10205801800111658s Midpoint Fitting with min_cluster_size=52 Found 26 clusters in 0.09973800700026914s No need Re-Fitting with min_cluster_size=52 Clusters cached: [23, 26, 29, 47, 68] ================================ Run params : {'4_clus__rkey': 'hdbscan', '4_clus__rbase_factor': 3} -------------------------------- Scoring params : {'4_clus__siter_stab': 2, '4_clus__sremove_stab': [0, 0.01, 0.03, 0.1, 0.25], '4_clus__smetric': 'euclidean', '4_clus__srandom_state': None} ================================ ----------- Scores ----------- 4_clus__nb_clust_0 : 8.0000 4_clus__silhouette_0 : 0.0580 4_clus__avg_word_couv_0 : 0.4744 4_clus__med_word_couv_0 : 0.5177 4_clus__avg_word_couv_minus_0 : 0.4455 4_clus__big_small_ratio_0 : 8.8770 4_clus__stab_clus_0 : 0.1875 4_clus__nb_clust_1 : 24.0000 4_clus__silhouette_1 : 0.1464 4_clus__avg_word_couv_1 : 0.6585 4_clus__med_word_couv_1 : 0.6773 4_clus__avg_word_couv_minus_1 : 0.6338 4_clus__big_small_ratio_1 : 19.2000 4_clus__stab_clus_1 : 0.1269 4_clus__avg_stab_avg : 0.1572 4_clus__avg_couv_avg : 0.5664 4_clus__clu_score : 0.3618 --------- Desc Scores --------- 4_clus__clus_eval_pos_0_det 0 networking internet architecture, neural netwo... 1 visualizations, interfaces : s 720 stb 0.80 + ... 2 query, visual analytics : s 554 stb 0.00 + 0.3... 3 quantitative methods, bioinformatics : s 283 s... 4 logic science, semantics : s 222 stb 0.10 + 0.... 5 architectures, programming languages : s 188 s... 6 services, cluster computing : s 125 stb 0.00 +... 7 fluid, numerical simulations : s 122 stb 0.00 ... dtype: object VALUE : 0.4744 4_clus__clus_eval_pos_1_det 0 interaction techniques, virtual : s 720 stb 0.... 1 ontology, documents : s 185 stb 0.70 + 0.57 - ... 2 image, clustering : s 128 stb 0.00 + 0.52 - 0.04 3 internet architecture, energy : s 128 stb 0.00... 4 vertices, minimum : s 126 stb 0.00 + 0.67 - 0.03 5 service, fault : s 125 stb 0.00 + 0.68 - 0.04 6 secondary structure, protein : s 123 stb 0.00 ... 7 dynamics, mechanics : s 122 stb 0.00 + 0.62 - ... 8 multi objective, belief propagation : s 122 st... 9 compiler, optimizations : s 120 stb 0.00 + 0.5... 10 humanities social sciences, social networks : ... 11 biology, metabolic : s 114 stb 0.10 + 0.54 - 0.02 12 adaptive, multi armed : s 108 stb 0.20 + 0.63 ... 13 covariance matrix adaptation, benchmarking : s... 14 queries : s 99 stb 0.00 + 0.76 - 0.02 15 verification : s 85 stb 0.00 + 0.85 - 0.03 16 floating point, solver : s 79 stb 0.30 + 0.81 ... 17 combinatorics, trees : s 78 stb 0.00 + 0.67 - ... 18 monte carlo, games : s 74 stb 0.20 + 0.97 - 0.02 19 calculus, object oriented : s 71 stb 0.00 + 0.... 20 automata, boolean networks : s 71 stb 0.10 + 0... 21 challenge, reinforcement learning : s 65 stb 0... 22 analytics : s 63 stb 0.00 + 0.95 - 0.01 23 stabilizing, population protocols : s 62 stb 0... 24 linear systems, matrices : s 61 stb 0.00 + 0.7... 25 optimization control, bounds : s 55 stb 0.10 +... dtype: object VALUE : 0.6585 --------- Raw Scores --------- 4_clustering scores: None ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score'] ================================ Run params : {} -------------------------------- Scoring params : {'6_pst__sname_list': ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score']} ================================ ----------- Scores ----------- 6_pst__final_score : 0.4184 --------- Desc Scores --------- 6_pst__final_score_det 0 2_nD__neighbors_articles_authors : 0.48 1 3_2D__neighbors_articles_authors : 0.42 2 4_clus__clu_score : 0.36 dtype: object VALUE : 0.4184 --------- Raw Scores --------- 6_post scores: None Finished running step! Running experiment for parameters: {'id': '014dbb63a341d2622f25', 'robustseed': 0, 'authors__filter_min_score': 4, 'filter_min_score': 6, 'projection_nD': {'key': 'lsa', 'num_dims': 50, 'extra_param': True}, 'projection_2D': {'key': 'umap', 'n_neighbors': 20, 'min_dist': 0.5, 'metric': 'euclidean'}} Matrices of type mat for articles, authors, teams, labs, words already exist. Skipping creation. Matrices of type lsa for articles, authors, teams, labs, words already exist. Skipping creation. ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 ================================ Run params : {} -------------------------------- Scoring params : {} ================================ ----------- Scores ----------- custom_score_lsa : 10.0000 --------- Desc Scores --------- --------- Raw Scores --------- custom scores: None ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42, '2_nD__sfactor': 10} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 2_nD__custom_score_lsa : 10.0000 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 2_projection_nD scores: None umap matrices generated. ================================ Run params : {'3_2D__rkey': 'umap', '3_2D__rmetric': 'euclidean', '3_2D__rn_neighbors': 20, '3_2D__rmin_dist': 0.5, '3_2D__rinit': 'random', '3_2D__rlearning_rate': 1.0, '3_2D__rn_epochs': None, '3_2D__rrandom_state': None} -------------------------------- Scoring params : {'3_2D__smin_score': 30, '3_2D__srecompute': True, '3_2D__ssample_size': None, '3_2D__sn_neighbors': 10, '3_2D__srandom_state': 42} ================================ ----------- Scores ----------- 3_2D__neighbors_articles_authors : 0.3938 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean : -0.0840 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median : -0.0802 --------- Desc Scores --------- 3_2D__neighbors_articles_authors_det 0 Céline Gicquel : 0.66 1 Loïc Paulevé : 0.64 2 Sébastien Tixeuil : 0.59 3 Raymond Ros : 0.56 4 Nikolaus Hansen : 0.55 5 Philippe Caillou : 0.54 6 Olivier Teytaud : 0.52 7 Cyril Furtlehner : 0.51 8 Guillaume Melquiond : 0.51 9 Yann Ponty : 0.51 10 Nicolas Bredeche : 0.50 11 Dimo Brockhoff : 0.50 12 Albert Cohen : 0.48 13 Anne Auger : 0.47 14 Sarah Cohen-Boulakia : 0.45 15 Isabelle Guyon : 0.44 16 Ioana Manolescu : 0.43 17 Marc Baboulin : 0.42 18 Tobias Isenberg : 0.42 19 Fatiha Saïs : 0.42 20 Franck Cappello : 0.41 21 Jean-Daniel Fekete : 0.41 22 Chantal Reynaud : 0.41 23 Sylvie Boldo : 0.41 24 Claude Marché : 0.39 25 Paola Tubaro : 0.38 26 Marc Schoenauer : 0.38 27 Lonni Besançon : 0.38 28 Petra Isenberg : 0.36 29 Steven Martin : 0.35 30 Nathann Cohen : 0.35 31 Guillaume Charpiat : 0.35 32 François Goasdoué : 0.35 33 Nathalie Pernelle : 0.34 34 Michèle Sebag : 0.32 35 Olivier Chapuis : 0.32 36 Fatiha Zaidi : 0.30 37 Alain Denise : 0.27 38 Pierre Dragicevic : 0.27 39 Michel Beaudouin-Lafon : 0.26 40 Anastasia Bezerianos : 0.26 41 Caroline Appert : 0.25 42 Johanne Cohen : 0.23 43 Balázs Kégl : 0.22 44 Wendy Mackay : 0.22 45 Emmanuel Pietriga : 0.21 46 Evelyne Lutton : 0.18 47 Wendy E. Mackay : 0.18 dtype: object VALUE : 0.3938 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_det 0 Paola Tubaro : -0.22 1 Isabelle Guyon : -0.18 2 Guillaume Charpiat : -0.17 3 Céline Gicquel : -0.16 4 Cyril Furtlehner : -0.15 5 Nathalie Pernelle : -0.14 6 Philippe Caillou : -0.14 7 Sarah Cohen-Boulakia : -0.14 8 Nikolaus Hansen : -0.13 9 Petra Isenberg : -0.12 10 Anne Auger : -0.12 11 Tobias Isenberg : -0.12 12 Marc Baboulin : -0.12 13 Lonni Besançon : -0.11 14 Dimo Brockhoff : -0.11 15 Chantal Reynaud : -0.10 16 Raymond Ros : -0.10 17 Fatiha Zaidi : -0.09 18 Fatiha Saïs : -0.09 19 Sébastien Tixeuil : -0.09 20 Evelyne Lutton : -0.09 21 Loïc Paulevé : -0.09 22 François Goasdoué : -0.08 23 Ioana Manolescu : -0.08 24 Sylvie Boldo : -0.08 25 Wendy Mackay : -0.08 26 Yann Ponty : -0.08 27 Claude Marché : -0.07 28 Franck Cappello : -0.07 29 Olivier Chapuis : -0.06 30 Marc Schoenauer : -0.06 31 Balázs Kégl : -0.06 32 Michèle Sebag : -0.06 33 Anastasia Bezerianos : -0.06 34 Emmanuel Pietriga : -0.05 35 Albert Cohen : -0.05 36 Pierre Dragicevic : -0.05 37 Olivier Teytaud : -0.05 38 Nicolas Bredeche : -0.04 39 Johanne Cohen : -0.04 40 Michel Beaudouin-Lafon : -0.04 41 Nathann Cohen : -0.03 42 Jean-Daniel Fekete : -0.03 43 Alain Denise : -0.03 44 Wendy E. Mackay : -0.02 45 Caroline Appert : -0.02 46 Steven Martin : -0.00 47 Guillaume Melquiond : 0.04 dtype: object VALUE : -0.0840 --------- Raw Scores --------- 3_2D__neighbors_articles_authors Sébastien Tixeuil 0.591489 Michèle Sebag 0.323358 Johanne Cohen 0.234884 Albert Cohen 0.477586 Wendy E. Mackay 0.178261 Philippe Caillou 0.537209 Alain Denise 0.272222 Jean-Daniel Fekete 0.411321 Emmanuel Pietriga 0.206349 Yann Ponty 0.509091 Marc Schoenauer 0.379856 Franck Cappello 0.412195 Caroline Appert 0.254348 Michel Beaudouin-Lafon 0.260494 Wendy Mackay 0.223404 Anne Auger 0.470886 Evelyne Lutton 0.183784 Pierre Dragicevic 0.266667 Ioana Manolescu 0.426829 Nikolaus Hansen 0.551852 Nicolas Bredeche 0.502941 Olivier Teytaud 0.520755 François Goasdoué 0.345283 Nathalie Pernelle 0.344118 Fatiha Saïs 0.417073 Sarah Cohen-Boulakia 0.445455 Claude Marché 0.393617 Chantal Reynaud 0.410000 Olivier Chapuis 0.321154 Steven Martin 0.353846 Fatiha Zaidi 0.300000 Balázs Kégl 0.223684 Paola Tubaro 0.382051 Raymond Ros 0.558824 Cyril Furtlehner 0.512821 Anastasia Bezerianos 0.259701 Sylvie Boldo 0.408571 Guillaume Melquiond 0.509091 Marc Baboulin 0.422222 Dimo Brockhoff 0.502564 Nathann Cohen 0.348780 Petra Isenberg 0.357009 Tobias Isenberg 0.418803 Loïc Paulevé 0.640476 Céline Gicquel 0.663158 Isabelle Guyon 0.444944 Guillaume Charpiat 0.348387 Lonni Besançon 0.375758 dtype: float64 3_2D__2_nD_3_2D_neighbors_articles_authors_dim 2_nD__neighbors_articles_authors \ Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 3_2D__neighbors_articles_authors scdec Sébastien Tixeuil 0.591489 -0.089362 Michèle Sebag 0.323358 -0.060584 Johanne Cohen 0.234884 -0.037209 Albert Cohen 0.477586 -0.051724 Wendy E. Mackay 0.178261 -0.021739 Philippe Caillou 0.537209 -0.137209 Alain Denise 0.272222 -0.025000 Jean-Daniel Fekete 0.411321 -0.025786 Emmanuel Pietriga 0.206349 -0.053968 Yann Ponty 0.509091 -0.077273 Marc Schoenauer 0.379856 -0.063309 Franck Cappello 0.412195 -0.068293 Caroline Appert 0.254348 -0.019565 Michel Beaudouin-Lafon 0.260494 -0.037037 Wendy Mackay 0.223404 -0.078723 Anne Auger 0.470886 -0.120253 Evelyne Lutton 0.183784 -0.089189 Pierre Dragicevic 0.266667 -0.050617 Ioana Manolescu 0.426829 -0.080488 Nikolaus Hansen 0.551852 -0.134568 Nicolas Bredeche 0.502941 -0.041176 Olivier Teytaud 0.520755 -0.047170 François Goasdoué 0.345283 -0.084906 Nathalie Pernelle 0.344118 -0.138235 Fatiha Saïs 0.417073 -0.090244 Sarah Cohen-Boulakia 0.445455 -0.136364 Claude Marché 0.393617 -0.072340 Chantal Reynaud 0.410000 -0.103333 Olivier Chapuis 0.321154 -0.063462 Steven Martin 0.353846 -0.002564 Fatiha Zaidi 0.300000 -0.090625 Balázs Kégl 0.223684 -0.063158 Paola Tubaro 0.382051 -0.220513 Raymond Ros 0.558824 -0.097059 Cyril Furtlehner 0.512821 -0.153846 Anastasia Bezerianos 0.259701 -0.059701 Sylvie Boldo 0.408571 -0.080000 Guillaume Melquiond 0.509091 0.036364 Marc Baboulin 0.422222 -0.117778 Dimo Brockhoff 0.502564 -0.107692 Nathann Cohen 0.348780 -0.031707 Petra Isenberg 0.357009 -0.122430 Tobias Isenberg 0.418803 -0.117949 Loïc Paulevé 0.640476 -0.085714 Céline Gicquel 0.663158 -0.155263 Isabelle Guyon 0.444944 -0.178652 Guillaume Charpiat 0.348387 -0.174194 Lonni Besançon 0.375758 -0.112121 3_projection_2D scores: None Nothing in cache, initial Fitting with min_cluster_size=15 Found 56 clusters in 0.286107854997681s Max Fitting with min_cluster_size=30 Found 39 clusters in 0.10574022000218974s Max Fitting with min_cluster_size=60 Found 4 clusters in 0.10681544199906057s Midpoint Fitting with min_cluster_size=45 Found 2 clusters in 0.10889044299983652s Midpoint Fitting with min_cluster_size=37 Found 2 clusters in 0.11201030500160414s Re-Fitting with min_cluster_size=30 Found 39 clusters in 0.10461806199964485s Clusters cached: [2, 2, 4, 39, 56] Nothing in cache, initial Fitting with min_cluster_size=15 Found 56 clusters in 0.10496335600328166s Max Fitting with min_cluster_size=30 Found 39 clusters in 0.10403247299836949s Max Fitting with min_cluster_size=60 Found 4 clusters in 0.10714149600244127s Midpoint Fitting with min_cluster_size=45 Found 2 clusters in 0.11016929000106757s Midpoint Fitting with min_cluster_size=37 Found 2 clusters in 0.11238704099741881s Re-Fitting with min_cluster_size=30 Found 39 clusters in 0.10525423400031286s Clusters cached: [2, 2, 4, 39, 56] ================================ Run params : {'4_clus__rkey': 'hdbscan', '4_clus__rbase_factor': 3} -------------------------------- Scoring params : {'4_clus__siter_stab': 2, '4_clus__sremove_stab': [0, 0.01, 0.03, 0.1, 0.25], '4_clus__smetric': 'euclidean', '4_clus__srandom_state': None} ================================ ----------- Scores ----------- 4_clus__nb_clust_0 : 8.0000 4_clus__silhouette_0 : 0.0406 4_clus__avg_word_couv_0 : 0.7675 4_clus__med_word_couv_0 : 0.7551 4_clus__avg_word_couv_minus_0 : 0.7440 4_clus__big_small_ratio_0 : 49.7000 4_clus__stab_clus_0 : 0.0000 4_clus__nb_clust_1 : 24.0000 4_clus__silhouette_1 : 0.0406 4_clus__avg_word_couv_1 : 0.6261 4_clus__med_word_couv_1 : 0.6250 4_clus__avg_word_couv_minus_1 : 0.6076 4_clus__big_small_ratio_1 : 49.7000 4_clus__stab_clus_1 : 0.0000 4_clus__avg_stab_avg : 0.0000 4_clus__avg_couv_avg : 0.6968 4_clus__clu_score : 0.3484 --------- Desc Scores --------- 4_clus__clus_eval_pos_0_det 0 ontology, humanities social sciences : s 311 s... 1 semantics, architectures : s 164 stb 0.00 + 0.... 2 vertices, minimum : s 136 stb 0.00 + 0.66 - 0.02 3 biology, biological : s 130 stb 0.00 + 0.58 - ... 4 image, natural language : s 130 stb 0.00 + 0.5... 5 inference, gradient : s 125 stb 0.00 + 0.44 - ... 6 networking internet architecture, packet : s 1... 7 fluid, numerical simulations : s 95 stb 0.00 +... 8 logic science, verification : s 80 stb 0.00 + ... 9 visualizations : s 79 stb 0.00 + 0.85 - 0.02 10 secondary structure, sequence : s 77 stb 0.00 ... 11 query : s 73 stb 0.00 + 0.99 - 0.03 12 monte carlo, games : s 72 stb 0.00 + 0.97 - 0.02 13 combinatorics, trees : s 67 stb 0.00 + 0.72 - ... 14 robots, robotics : s 65 stb 0.00 + 0.92 - 0.01 15 covariance matrix adaptation evolution, matric... 16 fault, stabilizing algorithm : s 64 stb 0.00 +... 17 adaptive, bitcoin : s 62 stb 0.00 + 0.63 - 0.03 18 services, cloud : s 57 stb 0.00 + 0.86 - 0.04 19 creative, music : s 54 stb 0.00 + 0.63 - 0.01 20 visual analytics : s 54 stb 0.00 + 0.85 - 0.01 21 noisy optimization, bounds : s 49 stb 0.00 + 0... 22 floating point : s 49 stb 0.00 + 0.86 - 0.00 23 agent : s 48 stb 0.00 + 0.96 - 0.01 24 testing : s 43 stb 0.00 + 0.93 - 0.02 25 multi objective, planning : s 42 stb 0.00 + 0.... 26 scientific, provenance : s 42 stb 0.00 + 0.90 ... 27 movement, navigation techniques : s 41 stb 0.0... 28 challenge, alignment : s 40 stb 0.00 + 0.78 - ... 29 benchmarking : s 40 stb 0.00 + 0.88 - 0.01 30 tangible, spatial : s 40 stb 0.00 + 0.75 - 0.04 31 protein : s 39 stb 0.00 + 0.97 - 0.01 32 automata : s 38 stb 0.00 + 0.76 - 0.01 33 multi armed : s 37 stb 0.00 + 0.78 - 0.00 34 quantum : s 35 stb 0.00 + 0.89 - 0.00 35 mixed integer linear, operations : s 34 stb 0.... 36 discrete event systems, diagnosis : s 31 stb 0... 37 linear systems, factorization : s 31 stb 0.00 ... 38 materialized views, xquery : s 30 stb 0.00 + 0... dtype: object VALUE : 0.7675 4_clus__clus_eval_pos_1_det 0 ontologies, documents : s 311 stb 0.00 + 0.33 ... 1 compiler, optimizations : s 164 stb 0.00 + 0.4... 2 discrete mathematics, vertex : s 136 stb 0.00 ... 3 image processing, natural language processing ... 4 molecular, metabolic : s 130 stb 0.00 + 0.45 -... 5 statistical, bayesian : s 125 stb 0.00 + 0.43 ... 6 internet architecture, wireless : s 102 stb 0.... 7 mechanics, nonlinear : s 95 stb 0.00 + 0.59 - ... 8 program verification, programs : s 80 stb 0.00... 9 information visualization, perception : s 79 s... 10 secondary, sampling : s 77 stb 0.00 + 0.78 - 0.03 11 queries, query answers : s 73 stb 0.00 + 0.74 ... 12 monte carlo search, carlo : s 72 stb 0.00 + 0.... 13 permutations, lattice : s 67 stb 0.00 + 0.52 -... 14 covariance matrix adaptation, dimension search... 15 robot, mobile robots : s 65 stb 0.00 + 0.83 - ... 16 message, stabilization : s 64 stb 0.00 + 0.67 ... 17 adaptation, mining : s 62 stb 0.00 + 0.45 - 0.05 18 service, cloud computing : s 57 stb 0.00 + 0.7... 19 analytics : s 54 stb 0.00 + 0.96 - 0.01 20 creativity, musical : s 54 stb 0.00 + 0.57 - 0.01 21 floating point arithmetic, arithmetic : s 49 s... 22 noisy, lower bounds : s 49 stb 0.00 + 0.71 - 0.02 23 multi agent, modeling simulation : s 48 stb 0.... 24 conformance, symbolic : s 43 stb 0.00 + 0.58 -... 25 scientific workflows, workflow : s 42 stb 0.00... 26 pareto, divide evolve : s 42 stb 0.00 + 0.64 -... 27 dance, perspective : s 41 stb 0.00 + 0.39 - 0.02 28 automl, competition : s 40 stb 0.00 + 0.62 - 0.01 29 black optimization, testbed : s 40 stb 0.00 + ... 30 interface, scientific visualization : s 40 stb... 31 protein protein, structural biology : s 39 stb... 32 cellular automata, words : s 38 stb 0.00 + 0.5... 33 multi armed bandit, multi armed bandits : s 37... 34 quantum physics, circuits : s 35 stb 0.00 + 0.... 35 mixed integer, chance : s 34 stb 0.00 + 0.68 -... 36 dense linear, pivoting : s 31 stb 0.00 + 0.71 ... 37 discrete event, faults : s 31 stb 0.00 + 0.84 ... 38 views, efficiency scalability : s 30 stb 0.00 ... dtype: object VALUE : 0.6261 --------- Raw Scores --------- 4_clustering scores: None ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score'] ================================ Run params : {} -------------------------------- Scoring params : {'6_pst__sname_list': ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score']} ================================ ----------- Scores ----------- 6_pst__final_score : 0.4067 --------- Desc Scores --------- 6_pst__final_score_det 0 2_nD__neighbors_articles_authors : 0.48 1 3_2D__neighbors_articles_authors : 0.39 2 4_clus__clu_score : 0.35 dtype: object VALUE : 0.4067 --------- Raw Scores --------- 6_post scores: None Finished running step! <cartodata.model_selection.utils.Results object at 0x7efd4413cbb0> .. GENERATED FROM PYTHON SOURCE LINES 472-473 We can see that we have run the first 6 parameter sets in the dataframe. .. GENERATED FROM PYTHON SOURCE LINES 473-476 .. code-block:: Python len(experiment.results.runs_) .. rst-class:: sphx-glr-script-out .. code-block:: none 6 .. GENERATED FROM PYTHON SOURCE LINES 477-478 Let's say we have stopped the experiment at this point. The parameter list that we have run already is saved as a .CSV file in the `TOP_DIR`. .. GENERATED FROM PYTHON SOURCE LINES 478-488 .. code-block:: Python # !ls $TOP_DIR "" import pandas as pd df = pd.read_csv(TOP_DIR / "experiment.csv", index_col=0) df .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>id</th> <th>robustseed</th> <th>authors__filter_min_score</th> <th>filter_min_score</th> <th>projection_nD</th> <th>projection_2D</th> <th>selected</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>68d289ffd85ae917e710</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>1</th> <td>ce1c0d334fc75a6570a5</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>2</th> <td>a588bce09630b37c4111</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>3</th> <td>06128c38fd13123e263c</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>4</th> <td>1040be9e44c8ab04aa0e</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>5</th> <td>014dbb63a341d2622f25</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>6</th> <td>06a7ca0915d11a6cad00</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>7</th> <td>979bdf3fc81db6766d24</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>8</th> <td>74f9b611573d48c19a8e</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>9</th> <td>c5ec62b56a0c0563c079</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>10</th> <td>b11b71ed11b157e13f95</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>11</th> <td>a7909c645cf88ed5c209</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>12</th> <td>4c16fefcccebf0b96309</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>13</th> <td>97a0b8354402e18fa744</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>14</th> <td>dcfa478890363f0396c3</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>15</th> <td>0070d0c653c88c823b5c</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>16</th> <td>9fd981e9c09b2eed1de6</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>17</th> <td>8ff3e42500d4389f445d</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>18</th> <td>9bd0b3935ca3e4457d8a</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>19</th> <td>9a6fd2af303ac5430413</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>20</th> <td>151ba7fff2224cb7d57b</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>21</th> <td>45e2d7c0f5ed87a9653b</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>22</th> <td>fb97932fdc7a24071f48</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>23</th> <td>3381a66259bc4e6d8899</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>24</th> <td>5c605c552b449a76cbbf</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>25</th> <td>eae12b9b57e5abbf5b3b</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>26</th> <td>1595a61c3d93a94b121e</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>27</th> <td>d1ced9d06c4ed06937ad</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>28</th> <td>fc5671119a7e46e9b519</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>29</th> <td>c6c7cfaf3dab327815a3</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>30</th> <td>e3c9335d86928f04d986</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>31</th> <td>b2b14d84c6cf741b3f94</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>32</th> <td>e079875025cff951a37d</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>33</th> <td>943a271c14a11b4e5954</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>34</th> <td>fea341b317d4d596ea82</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>35</th> <td>ba4951c2c78e0031fb8e</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>36</th> <td>939f3d80d6ec35db69f7</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>37</th> <td>18a385a32e9a8250cfda</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>38</th> <td>41f146808f2ef8b013be</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>39</th> <td>f32ac02bc42412221a98</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>40</th> <td>ed7b6ebc7f1b57baa10c</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>41</th> <td>9616f8655120a922eb8f</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>42</th> <td>a72244820858b67def57</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>43</th> <td>3ae9168b3636e9c9ab4f</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>44</th> <td>ec8c846300e8221b9a52</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> </tbody> </table> </div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 489-490 When we want to continue to run the experiment, we initiate a new parameter iterator with this file and continue running the experiment for the parameters set that were not used during the previous experiments. .. GENERATED FROM PYTHON SOURCE LINES 490-521 .. code-block:: Python experiment_file = TOP_DIR / "experiment.csv" param_iterator = GridIterator(csv_filepath=experiment_file) "" experiment = Experiment( "lisn", "2022.11.15.1", TOP_DIR, CONF_DIR, INPUT_DIR, NATURE, SOURCE, param_iterator, score_list=[CustomScore, NeighborsND, Neighbors2D, Comparative, # TrustworthinessSklearn, # TrustworthinessUmap, Clustering, FinalScore], final_score__name_list=[ PhaseProjectionND.prefix("neighbors_articles_authors"), PhaseProjection2D.prefix("neighbors_articles_authors"), PhaseClustering.prefix("clu_score")], neighbors__recompute=True, neighbors__min_score =30, # trustworthiness_sklearn__n_neighbors=10, custom__factor=10 ) "" experiment.run(2) .. rst-class:: sphx-glr-script-out .. code-block:: none Running experiment for parameters: {'id': '06a7ca0915d11a6cad00', 'robustseed': 0, 'authors__filter_min_score': 4, 'filter_min_score': 6, 'projection_nD': {'key': 'lsa', 'num_dims': 50, 'extra_param': True}, 'projection_2D': {'key': 'umap', 'n_neighbors': 50, 'min_dist': 0.1, 'metric': 'euclidean'}} Matrices of type mat for articles, authors, teams, labs, words already exist. Skipping creation. Matrices of type lsa for articles, authors, teams, labs, words already exist. Skipping creation. ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 ================================ Run params : {} -------------------------------- Scoring params : {} ================================ ----------- Scores ----------- custom_score_lsa : 10.0000 --------- Desc Scores --------- --------- Raw Scores --------- custom scores: None ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42, '2_nD__sfactor': 10} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 2_nD__custom_score_lsa : 10.0000 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 2_projection_nD scores: None umap matrices generated. ================================ Run params : {'3_2D__rkey': 'umap', '3_2D__rmetric': 'euclidean', '3_2D__rn_neighbors': 50, '3_2D__rmin_dist': 0.1, '3_2D__rinit': 'random', '3_2D__rlearning_rate': 1.0, '3_2D__rn_epochs': None, '3_2D__rrandom_state': None} -------------------------------- Scoring params : {'3_2D__smin_score': 30, '3_2D__srecompute': True, '3_2D__ssample_size': None, '3_2D__sn_neighbors': 10, '3_2D__srandom_state': 42} ================================ ----------- Scores ----------- 3_2D__neighbors_articles_authors : 0.4092 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean : -0.0687 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median : -0.0623 --------- Desc Scores --------- 3_2D__neighbors_articles_authors_det 0 Céline Gicquel : 0.69 1 Loïc Paulevé : 0.67 2 Nikolaus Hansen : 0.60 3 Sébastien Tixeuil : 0.59 4 Cyril Furtlehner : 0.59 5 Isabelle Guyon : 0.56 6 Yann Ponty : 0.55 7 Nicolas Bredeche : 0.55 8 Philippe Caillou : 0.54 9 Raymond Ros : 0.54 10 Anne Auger : 0.52 11 Tobias Isenberg : 0.52 12 Dimo Brockhoff : 0.51 13 Albert Cohen : 0.50 14 Olivier Teytaud : 0.50 15 Fatiha Saïs : 0.48 16 Marc Baboulin : 0.46 17 Paola Tubaro : 0.45 18 Nathalie Pernelle : 0.44 19 Ioana Manolescu : 0.44 20 Sarah Cohen-Boulakia : 0.43 21 Sylvie Boldo : 0.42 22 Petra Isenberg : 0.41 23 Chantal Reynaud : 0.41 24 Marc Schoenauer : 0.40 25 Lonni Besançon : 0.40 26 Jean-Daniel Fekete : 0.40 27 Nathann Cohen : 0.40 28 Franck Cappello : 0.39 29 Claude Marché : 0.35 30 François Goasdoué : 0.33 31 Guillaume Melquiond : 0.33 32 Guillaume Charpiat : 0.33 33 Olivier Chapuis : 0.33 34 Michèle Sebag : 0.33 35 Steven Martin : 0.31 36 Pierre Dragicevic : 0.30 37 Fatiha Zaidi : 0.28 38 Anastasia Bezerianos : 0.28 39 Caroline Appert : 0.26 40 Michel Beaudouin-Lafon : 0.26 41 Alain Denise : 0.25 42 Johanne Cohen : 0.24 43 Balázs Kégl : 0.23 44 Evelyne Lutton : 0.23 45 Wendy Mackay : 0.22 46 Wendy E. Mackay : 0.21 47 Emmanuel Pietriga : 0.20 dtype: object VALUE : 0.4092 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_det 0 Guillaume Charpiat : -0.19 1 Paola Tubaro : -0.15 2 Sarah Cohen-Boulakia : -0.15 3 Guillaume Melquiond : -0.14 4 Philippe Caillou : -0.13 5 Céline Gicquel : -0.13 6 Claude Marché : -0.12 7 Raymond Ros : -0.11 8 Chantal Reynaud : -0.11 9 Fatiha Zaidi : -0.11 10 Dimo Brockhoff : -0.10 11 François Goasdoué : -0.10 12 Franck Cappello : -0.09 13 Sébastien Tixeuil : -0.09 14 Nikolaus Hansen : -0.09 15 Lonni Besançon : -0.09 16 Marc Baboulin : -0.08 17 Wendy Mackay : -0.08 18 Cyril Furtlehner : -0.08 19 Ioana Manolescu : -0.07 20 Petra Isenberg : -0.07 21 Anne Auger : -0.07 22 Sylvie Boldo : -0.07 23 Olivier Teytaud : -0.07 24 Isabelle Guyon : -0.06 25 Loïc Paulevé : -0.06 26 Michèle Sebag : -0.06 27 Emmanuel Pietriga : -0.06 28 Olivier Chapuis : -0.06 29 Balázs Kégl : -0.05 30 Alain Denise : -0.05 31 Steven Martin : -0.05 32 Nathalie Pernelle : -0.04 33 Marc Schoenauer : -0.04 34 Anastasia Bezerianos : -0.04 35 Michel Beaudouin-Lafon : -0.04 36 Evelyne Lutton : -0.04 37 Jean-Daniel Fekete : -0.04 38 Yann Ponty : -0.04 39 Johanne Cohen : -0.03 40 Fatiha Saïs : -0.03 41 Albert Cohen : -0.03 42 Tobias Isenberg : -0.02 43 Pierre Dragicevic : -0.01 44 Caroline Appert : -0.01 45 Nicolas Bredeche : 0.01 46 Wendy E. Mackay : 0.01 47 Nathann Cohen : 0.01 dtype: object VALUE : -0.0687 --------- Raw Scores --------- 3_2D__neighbors_articles_authors Sébastien Tixeuil 0.591489 Michèle Sebag 0.325547 Johanne Cohen 0.239535 Albert Cohen 0.503448 Wendy E. Mackay 0.208696 Philippe Caillou 0.544186 Alain Denise 0.250000 Jean-Daniel Fekete 0.399371 Emmanuel Pietriga 0.203175 Yann Ponty 0.550000 Marc Schoenauer 0.400719 Franck Cappello 0.387805 Caroline Appert 0.263043 Michel Beaudouin-Lafon 0.256790 Wendy Mackay 0.221277 Anne Auger 0.522785 Evelyne Lutton 0.232432 Pierre Dragicevic 0.302469 Ioana Manolescu 0.435366 Nikolaus Hansen 0.597531 Nicolas Bredeche 0.550000 Olivier Teytaud 0.502830 François Goasdoué 0.333962 Nathalie Pernelle 0.438235 Fatiha Saïs 0.475610 Sarah Cohen-Boulakia 0.433333 Claude Marché 0.348936 Chantal Reynaud 0.406667 Olivier Chapuis 0.328846 Steven Martin 0.310256 Fatiha Zaidi 0.284375 Balázs Kégl 0.234211 Paola Tubaro 0.453846 Raymond Ros 0.544118 Cyril Furtlehner 0.589744 Anastasia Bezerianos 0.277612 Sylvie Boldo 0.422857 Guillaume Melquiond 0.330303 Marc Baboulin 0.457778 Dimo Brockhoff 0.510256 Nathann Cohen 0.395122 Petra Isenberg 0.409346 Tobias Isenberg 0.516239 Loïc Paulevé 0.666667 Céline Gicquel 0.689474 Isabelle Guyon 0.564045 Guillaume Charpiat 0.329032 Lonni Besançon 0.400000 dtype: float64 3_2D__2_nD_3_2D_neighbors_articles_authors_dim 2_nD__neighbors_articles_authors \ Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 3_2D__neighbors_articles_authors scdec Sébastien Tixeuil 0.591489 -0.089362 Michèle Sebag 0.325547 -0.058394 Johanne Cohen 0.239535 -0.032558 Albert Cohen 0.503448 -0.025862 Wendy E. Mackay 0.208696 0.008696 Philippe Caillou 0.544186 -0.130233 Alain Denise 0.250000 -0.047222 Jean-Daniel Fekete 0.399371 -0.037736 Emmanuel Pietriga 0.203175 -0.057143 Yann Ponty 0.550000 -0.036364 Marc Schoenauer 0.400719 -0.042446 Franck Cappello 0.387805 -0.092683 Caroline Appert 0.263043 -0.010870 Michel Beaudouin-Lafon 0.256790 -0.040741 Wendy Mackay 0.221277 -0.080851 Anne Auger 0.522785 -0.068354 Evelyne Lutton 0.232432 -0.040541 Pierre Dragicevic 0.302469 -0.014815 Ioana Manolescu 0.435366 -0.071951 Nikolaus Hansen 0.597531 -0.088889 Nicolas Bredeche 0.550000 0.005882 Olivier Teytaud 0.502830 -0.065094 François Goasdoué 0.333962 -0.096226 Nathalie Pernelle 0.438235 -0.044118 Fatiha Saïs 0.475610 -0.031707 Sarah Cohen-Boulakia 0.433333 -0.148485 Claude Marché 0.348936 -0.117021 Chantal Reynaud 0.406667 -0.106667 Olivier Chapuis 0.328846 -0.055769 Steven Martin 0.310256 -0.046154 Fatiha Zaidi 0.284375 -0.106250 Balázs Kégl 0.234211 -0.052632 Paola Tubaro 0.453846 -0.148718 Raymond Ros 0.544118 -0.111765 Cyril Furtlehner 0.589744 -0.076923 Anastasia Bezerianos 0.277612 -0.041791 Sylvie Boldo 0.422857 -0.065714 Guillaume Melquiond 0.330303 -0.142424 Marc Baboulin 0.457778 -0.082222 Dimo Brockhoff 0.510256 -0.100000 Nathann Cohen 0.395122 0.014634 Petra Isenberg 0.409346 -0.070093 Tobias Isenberg 0.516239 -0.020513 Loïc Paulevé 0.666667 -0.059524 Céline Gicquel 0.689474 -0.128947 Isabelle Guyon 0.564045 -0.059551 Guillaume Charpiat 0.329032 -0.193548 Lonni Besançon 0.400000 -0.087879 3_projection_2D scores: None Nothing in cache, initial Fitting with min_cluster_size=15 Found 75 clusters in 0.2549978460010607s Max Fitting with min_cluster_size=30 Found 55 clusters in 0.10591133300113142s Max Fitting with min_cluster_size=60 Found 24 clusters in 0.10550347100070212s Max Fitting with min_cluster_size=120 Found 2 clusters in 0.1063100969986408s Midpoint Fitting with min_cluster_size=90 Found 17 clusters in 0.10281582999959937s Midpoint Fitting with min_cluster_size=105 Found 13 clusters in 0.10239299800014123s Midpoint Fitting with min_cluster_size=112 Found 13 clusters in 0.10005356100009521s No need Re-Fitting with min_cluster_size=112 Clusters cached: [2, 13, 13, 17, 24, 55, 75] Nothing in cache, initial Fitting with min_cluster_size=15 Found 75 clusters in 0.10446891900210176s Max Fitting with min_cluster_size=30 Found 55 clusters in 0.10560662799980491s Max Fitting with min_cluster_size=60 Found 24 clusters in 0.10713341199880233s No need Re-Fitting with min_cluster_size=60 Clusters cached: [24, 55, 75] ================================ Run params : {'4_clus__rkey': 'hdbscan', '4_clus__rbase_factor': 3} -------------------------------- Scoring params : {'4_clus__siter_stab': 2, '4_clus__sremove_stab': [0, 0.01, 0.03, 0.1, 0.25], '4_clus__smetric': 'euclidean', '4_clus__srandom_state': None} ================================ ----------- Scores ----------- 4_clus__nb_clust_0 : 8.0000 4_clus__silhouette_0 : 0.1407 4_clus__avg_word_couv_0 : 0.4930 4_clus__med_word_couv_0 : 0.5139 4_clus__avg_word_couv_minus_0 : 0.4675 4_clus__big_small_ratio_0 : 8.3929 4_clus__stab_clus_0 : 0.1385 4_clus__nb_clust_1 : 24.0000 4_clus__silhouette_1 : 0.2960 4_clus__avg_word_couv_1 : 0.6031 4_clus__med_word_couv_1 : 0.5918 4_clus__avg_word_couv_minus_1 : 0.5767 4_clus__big_small_ratio_1 : 10.7377 4_clus__stab_clus_1 : 0.0250 4_clus__avg_stab_avg : 0.0817 4_clus__avg_couv_avg : 0.5481 4_clus__clu_score : 0.3149 --------- Desc Scores --------- 4_clus__clus_eval_pos_0_det 0 query, ontology : s 633 stb 0.10 + 0.32 - 0.03 1 visualizations, interfaces : s 632 stb 0.80 + ... 2 networking internet architecture, neural netwo... 3 optimization control, operations : s 254 stb 0... 4 logic science, semantics : s 252 stb 0.10 + 0.... 5 floating point, quantum : s 177 stb 0.30 + 0.4... 6 fluid, numerical simulations : s 145 stb 0.00 ... 7 cluster computing, mobile robots : s 144 stb 0... 8 vertices, minimum : s 135 stb 0.20 + 0.67 - 0.02 9 humanities social sciences, social networks : ... 10 compiler, architectures : s 131 stb 0.00 + 0.6... 11 biology, genes : s 121 stb 0.00 + 0.54 - 0.03 12 covariance matrix adaptation, benchmarking : s... dtype: object VALUE : 0.4930 4_clus__clus_eval_pos_1_det 0 networking internet, energy : s 453 stb 0.00 +... 1 touch, virtual : s 331 stb 0.00 + 0.35 - 0.02 2 stochastic, population : s 254 stb 0.00 + 0.41... 3 verification, testing : s 252 stb 0.00 + 0.61 ... 4 information visualization, cognitive science :... 5 floating point arithmetic, lattice : s 177 stb... 6 ontologies, entity : s 171 stb 0.00 + 0.51 - 0.01 7 natural language, translation : s 145 stb 0.00... 8 dynamics, mechanics : s 145 stb 0.00 + 0.57 - ... 9 fault, mobile : s 144 stb 0.00 + 0.62 - 0.04 10 discrete mathematics, vertex : s 135 stb 0.00 ... 11 social sciences, community : s 133 stb 0.00 + ... 12 programming languages, hardware : s 131 stb 0.... 13 biological, metabolic : s 121 stb 0.00 + 0.48 ... 14 covariance matrix adaptation evolution, testbe... 15 secondary structure, sequence : s 110 stb 0.00... 16 automata, regulatory : s 91 stb 0.20 + 0.77 - ... 17 documents, materialized views : s 84 stb 0.00 ... 18 services, cloud : s 83 stb 0.00 + 0.90 - 0.03 19 queries, query answers : s 81 stb 0.00 + 0.73 ... 20 monte carlo, games : s 74 stb 0.40 + 0.97 - 0.02 21 linear systems, matrices : s 66 stb 0.00 + 0.7... 22 image : s 62 stb 0.00 + 0.85 - 0.02 23 visual analytics : s 61 stb 0.00 + 0.85 - 0.01 dtype: object VALUE : 0.6031 --------- Raw Scores --------- 4_clustering scores: None ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score'] ================================ Run params : {} -------------------------------- Scoring params : {'6_pst__sname_list': ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score']} ================================ ----------- Scores ----------- 6_pst__final_score : 0.4006 --------- Desc Scores --------- 6_pst__final_score_det 0 2_nD__neighbors_articles_authors : 0.48 1 3_2D__neighbors_articles_authors : 0.41 2 4_clus__clu_score : 0.31 dtype: object VALUE : 0.4006 --------- Raw Scores --------- 6_post scores: None Finished running step! Running experiment for parameters: {'id': '979bdf3fc81db6766d24', 'robustseed': 0, 'authors__filter_min_score': 4, 'filter_min_score': 6, 'projection_nD': {'key': 'lsa', 'num_dims': 50, 'extra_param': True}, 'projection_2D': {'key': 'umap', 'n_neighbors': 50, 'min_dist': 0.25, 'metric': 'euclidean'}} Matrices of type mat for articles, authors, teams, labs, words already exist. Skipping creation. Matrices of type lsa for articles, authors, teams, labs, words already exist. Skipping creation. ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 ================================ Run params : {} -------------------------------- Scoring params : {} ================================ ----------- Scores ----------- custom_score_lsa : 10.0000 --------- Desc Scores --------- --------- Raw Scores --------- custom scores: None ================================ Run params : {'2_nD__rkey': 'lsa', '2_nD__rnum_dims': 50, '2_nD__rnormalize': True, '2_nD__rextra_param': True} -------------------------------- Scoring params : {'2_nD__smin_score': 30, '2_nD__srecompute': True, '2_nD__ssample_size': None, '2_nD__sn_neighbors': 10, '2_nD__srandom_state': 42, '2_nD__sfactor': 10} ================================ ----------- Scores ----------- 2_nD__neighbors_articles_authors : 0.4779 2_nD__custom_score_lsa : 10.0000 --------- Desc Scores --------- 2_nD__neighbors_articles_authors_det 0 Céline Gicquel : 0.82 1 Loïc Paulevé : 0.73 2 Nikolaus Hansen : 0.69 3 Sébastien Tixeuil : 0.68 4 Philippe Caillou : 0.67 5 Cyril Furtlehner : 0.67 6 Raymond Ros : 0.66 7 Isabelle Guyon : 0.62 8 Dimo Brockhoff : 0.61 9 Paola Tubaro : 0.60 10 Anne Auger : 0.59 11 Yann Ponty : 0.59 12 Sarah Cohen-Boulakia : 0.58 13 Olivier Teytaud : 0.57 14 Nicolas Bredeche : 0.54 15 Marc Baboulin : 0.54 16 Tobias Isenberg : 0.54 17 Albert Cohen : 0.53 18 Guillaume Charpiat : 0.52 19 Chantal Reynaud : 0.51 20 Fatiha Saïs : 0.51 21 Ioana Manolescu : 0.51 22 Sylvie Boldo : 0.49 23 Lonni Besançon : 0.49 24 Nathalie Pernelle : 0.48 25 Franck Cappello : 0.48 26 Petra Isenberg : 0.48 27 Guillaume Melquiond : 0.47 28 Claude Marché : 0.47 29 Marc Schoenauer : 0.44 30 Jean-Daniel Fekete : 0.44 31 François Goasdoué : 0.43 32 Fatiha Zaidi : 0.39 33 Olivier Chapuis : 0.38 34 Michèle Sebag : 0.38 35 Nathann Cohen : 0.38 36 Steven Martin : 0.36 37 Anastasia Bezerianos : 0.32 38 Pierre Dragicevic : 0.32 39 Wendy Mackay : 0.30 40 Michel Beaudouin-Lafon : 0.30 41 Alain Denise : 0.30 42 Balázs Kégl : 0.29 43 Caroline Appert : 0.27 44 Evelyne Lutton : 0.27 45 Johanne Cohen : 0.27 46 Emmanuel Pietriga : 0.26 47 Wendy E. Mackay : 0.20 Name: 0, dtype: object VALUE : 0.4779 --------- Raw Scores --------- 2_nD__neighbors_articles_authors Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 Name: 0, dtype: float64 2_projection_nD scores: None umap matrices generated. ================================ Run params : {'3_2D__rkey': 'umap', '3_2D__rmetric': 'euclidean', '3_2D__rn_neighbors': 50, '3_2D__rmin_dist': 0.25, '3_2D__rinit': 'random', '3_2D__rlearning_rate': 1.0, '3_2D__rn_epochs': None, '3_2D__rrandom_state': None} -------------------------------- Scoring params : {'3_2D__smin_score': 30, '3_2D__srecompute': True, '3_2D__ssample_size': None, '3_2D__sn_neighbors': 10, '3_2D__srandom_state': 42} ================================ ----------- Scores ----------- 3_2D__neighbors_articles_authors : 0.3995 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_mean : -0.0784 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_median : -0.0771 --------- Desc Scores --------- 3_2D__neighbors_articles_authors_det 0 Loïc Paulevé : 0.68 1 Céline Gicquel : 0.67 2 Cyril Furtlehner : 0.62 3 Philippe Caillou : 0.60 4 Sébastien Tixeuil : 0.58 5 Nikolaus Hansen : 0.58 6 Isabelle Guyon : 0.53 7 Nicolas Bredeche : 0.52 8 Olivier Teytaud : 0.52 9 Anne Auger : 0.51 10 Yann Ponty : 0.51 11 Raymond Ros : 0.49 12 Dimo Brockhoff : 0.49 13 Sylvie Boldo : 0.47 14 Tobias Isenberg : 0.46 15 Marc Baboulin : 0.46 16 Albert Cohen : 0.44 17 Sarah Cohen-Boulakia : 0.43 18 Chantal Reynaud : 0.43 19 Franck Cappello : 0.42 20 Guillaume Melquiond : 0.40 21 Ioana Manolescu : 0.39 22 Paola Tubaro : 0.39 23 Nathann Cohen : 0.39 24 Jean-Daniel Fekete : 0.39 25 Marc Schoenauer : 0.39 26 Lonni Besançon : 0.38 27 Nathalie Pernelle : 0.38 28 Fatiha Saïs : 0.38 29 Steven Martin : 0.35 30 Petra Isenberg : 0.34 31 Claude Marché : 0.34 32 Michèle Sebag : 0.33 33 Guillaume Charpiat : 0.33 34 Pierre Dragicevic : 0.31 35 Olivier Chapuis : 0.31 36 Fatiha Zaidi : 0.31 37 François Goasdoué : 0.30 38 Alain Denise : 0.28 39 Michel Beaudouin-Lafon : 0.27 40 Anastasia Bezerianos : 0.27 41 Johanne Cohen : 0.25 42 Balázs Kégl : 0.22 43 Wendy Mackay : 0.22 44 Caroline Appert : 0.21 45 Wendy E. Mackay : 0.21 46 Emmanuel Pietriga : 0.21 47 Evelyne Lutton : 0.19 dtype: object VALUE : 0.3995 3_2D__2_nD_3_2D_neighbors_articles_authors_dim_det 0 Paola Tubaro : -0.21 1 Guillaume Charpiat : -0.19 2 Raymond Ros : -0.16 3 Sarah Cohen-Boulakia : -0.15 4 Céline Gicquel : -0.15 5 Petra Isenberg : -0.14 6 François Goasdoué : -0.13 7 Fatiha Saïs : -0.13 8 Claude Marché : -0.12 9 Dimo Brockhoff : -0.12 10 Ioana Manolescu : -0.11 11 Nikolaus Hansen : -0.11 12 Lonni Besançon : -0.10 13 Nathalie Pernelle : -0.10 14 Sébastien Tixeuil : -0.10 15 Isabelle Guyon : -0.09 16 Chantal Reynaud : -0.09 17 Albert Cohen : -0.09 18 Fatiha Zaidi : -0.08 19 Wendy Mackay : -0.08 20 Anne Auger : -0.08 21 Marc Baboulin : -0.08 22 Evelyne Lutton : -0.08 23 Yann Ponty : -0.08 24 Olivier Chapuis : -0.08 25 Tobias Isenberg : -0.07 26 Guillaume Melquiond : -0.07 27 Philippe Caillou : -0.07 28 Balázs Kégl : -0.07 29 Caroline Appert : -0.06 30 Marc Schoenauer : -0.06 31 Franck Cappello : -0.06 32 Emmanuel Pietriga : -0.05 33 Anastasia Bezerianos : -0.05 34 Michèle Sebag : -0.05 35 Jean-Daniel Fekete : -0.05 36 Olivier Teytaud : -0.05 37 Cyril Furtlehner : -0.05 38 Loïc Paulevé : -0.04 39 Michel Beaudouin-Lafon : -0.03 40 Johanne Cohen : -0.03 41 Nicolas Bredeche : -0.02 42 Alain Denise : -0.02 43 Sylvie Boldo : -0.01 44 Steven Martin : -0.01 45 Pierre Dragicevic : -0.00 46 Wendy E. Mackay : 0.01 47 Nathann Cohen : 0.01 dtype: object VALUE : -0.0784 --------- Raw Scores --------- 3_2D__neighbors_articles_authors Sébastien Tixeuil 0.582979 Michèle Sebag 0.334307 Johanne Cohen 0.246512 Albert Cohen 0.443103 Wendy E. Mackay 0.206522 Philippe Caillou 0.604651 Alain Denise 0.277778 Jean-Daniel Fekete 0.388050 Emmanuel Pietriga 0.206349 Yann Ponty 0.509091 Marc Schoenauer 0.387050 Franck Cappello 0.424390 Caroline Appert 0.213043 Michel Beaudouin-Lafon 0.271605 Wendy Mackay 0.219149 Anne Auger 0.510127 Evelyne Lutton 0.194595 Pierre Dragicevic 0.314815 Ioana Manolescu 0.393902 Nikolaus Hansen 0.575309 Nicolas Bredeche 0.520588 Olivier Teytaud 0.519811 François Goasdoué 0.298113 Nathalie Pernelle 0.379412 Fatiha Saïs 0.378049 Sarah Cohen-Boulakia 0.427273 Claude Marché 0.342553 Chantal Reynaud 0.426667 Olivier Chapuis 0.307692 Steven Martin 0.346154 Fatiha Zaidi 0.306250 Balázs Kégl 0.221053 Paola Tubaro 0.392308 Raymond Ros 0.494118 Cyril Furtlehner 0.620513 Anastasia Bezerianos 0.265672 Sylvie Boldo 0.474286 Guillaume Melquiond 0.400000 Marc Baboulin 0.460000 Dimo Brockhoff 0.492308 Nathann Cohen 0.390244 Petra Isenberg 0.342991 Tobias Isenberg 0.463248 Loïc Paulevé 0.683333 Céline Gicquel 0.668421 Isabelle Guyon 0.533708 Guillaume Charpiat 0.332258 Lonni Besançon 0.384848 dtype: float64 3_2D__2_nD_3_2D_neighbors_articles_authors_dim 2_nD__neighbors_articles_authors \ Sébastien Tixeuil 0.680851 Michèle Sebag 0.383942 Johanne Cohen 0.272093 Albert Cohen 0.529310 Wendy E. Mackay 0.200000 Philippe Caillou 0.674419 Alain Denise 0.297222 Jean-Daniel Fekete 0.437107 Emmanuel Pietriga 0.260317 Yann Ponty 0.586364 Marc Schoenauer 0.443165 Franck Cappello 0.480488 Caroline Appert 0.273913 Michel Beaudouin-Lafon 0.297531 Wendy Mackay 0.302128 Anne Auger 0.591139 Evelyne Lutton 0.272973 Pierre Dragicevic 0.317284 Ioana Manolescu 0.507317 Nikolaus Hansen 0.686420 Nicolas Bredeche 0.544118 Olivier Teytaud 0.567925 François Goasdoué 0.430189 Nathalie Pernelle 0.482353 Fatiha Saïs 0.507317 Sarah Cohen-Boulakia 0.581818 Claude Marché 0.465957 Chantal Reynaud 0.513333 Olivier Chapuis 0.384615 Steven Martin 0.356410 Fatiha Zaidi 0.390625 Balázs Kégl 0.286842 Paola Tubaro 0.602564 Raymond Ros 0.655882 Cyril Furtlehner 0.666667 Anastasia Bezerianos 0.319403 Sylvie Boldo 0.488571 Guillaume Melquiond 0.472727 Marc Baboulin 0.540000 Dimo Brockhoff 0.610256 Nathann Cohen 0.380488 Petra Isenberg 0.479439 Tobias Isenberg 0.536752 Loïc Paulevé 0.726190 Céline Gicquel 0.818421 Isabelle Guyon 0.623596 Guillaume Charpiat 0.522581 Lonni Besançon 0.487879 3_2D__neighbors_articles_authors scdec Sébastien Tixeuil 0.582979 -0.097872 Michèle Sebag 0.334307 -0.049635 Johanne Cohen 0.246512 -0.025581 Albert Cohen 0.443103 -0.086207 Wendy E. Mackay 0.206522 0.006522 Philippe Caillou 0.604651 -0.069767 Alain Denise 0.277778 -0.019444 Jean-Daniel Fekete 0.388050 -0.049057 Emmanuel Pietriga 0.206349 -0.053968 Yann Ponty 0.509091 -0.077273 Marc Schoenauer 0.387050 -0.056115 Franck Cappello 0.424390 -0.056098 Caroline Appert 0.213043 -0.060870 Michel Beaudouin-Lafon 0.271605 -0.025926 Wendy Mackay 0.219149 -0.082979 Anne Auger 0.510127 -0.081013 Evelyne Lutton 0.194595 -0.078378 Pierre Dragicevic 0.314815 -0.002469 Ioana Manolescu 0.393902 -0.113415 Nikolaus Hansen 0.575309 -0.111111 Nicolas Bredeche 0.520588 -0.023529 Olivier Teytaud 0.519811 -0.048113 François Goasdoué 0.298113 -0.132075 Nathalie Pernelle 0.379412 -0.102941 Fatiha Saïs 0.378049 -0.129268 Sarah Cohen-Boulakia 0.427273 -0.154545 Claude Marché 0.342553 -0.123404 Chantal Reynaud 0.426667 -0.086667 Olivier Chapuis 0.307692 -0.076923 Steven Martin 0.346154 -0.010256 Fatiha Zaidi 0.306250 -0.084375 Balázs Kégl 0.221053 -0.065789 Paola Tubaro 0.392308 -0.210256 Raymond Ros 0.494118 -0.161765 Cyril Furtlehner 0.620513 -0.046154 Anastasia Bezerianos 0.265672 -0.053731 Sylvie Boldo 0.474286 -0.014286 Guillaume Melquiond 0.400000 -0.072727 Marc Baboulin 0.460000 -0.080000 Dimo Brockhoff 0.492308 -0.117949 Nathann Cohen 0.390244 0.009756 Petra Isenberg 0.342991 -0.136449 Tobias Isenberg 0.463248 -0.073504 Loïc Paulevé 0.683333 -0.042857 Céline Gicquel 0.668421 -0.150000 Isabelle Guyon 0.533708 -0.089888 Guillaume Charpiat 0.332258 -0.190323 Lonni Besançon 0.384848 -0.103030 3_projection_2D scores: None Nothing in cache, initial Fitting with min_cluster_size=15 Found 69 clusters in 0.26351266100027715s Max Fitting with min_cluster_size=30 Found 48 clusters in 0.1049684090030496s Max Fitting with min_cluster_size=60 Found 24 clusters in 0.10055748499871697s Max Fitting with min_cluster_size=120 Found 2 clusters in 0.10391530300330487s Midpoint Fitting with min_cluster_size=90 Found 2 clusters in 0.10530399999697693s Midpoint Fitting with min_cluster_size=75 Found 2 clusters in 0.10460692900232971s Midpoint Fitting with min_cluster_size=67 Found 19 clusters in 0.10069006399862701s No need Re-Fitting with min_cluster_size=67 Clusters cached: [2, 2, 2, 19, 24, 48, 69] Nothing in cache, initial Fitting with min_cluster_size=15 Found 69 clusters in 0.10288854900136357s Max Fitting with min_cluster_size=30 Found 48 clusters in 0.10291053100081626s Max Fitting with min_cluster_size=60 Found 24 clusters in 0.09792928800015943s No need Re-Fitting with min_cluster_size=60 Clusters cached: [24, 48, 69] ================================ Run params : {'4_clus__rkey': 'hdbscan', '4_clus__rbase_factor': 3} -------------------------------- Scoring params : {'4_clus__siter_stab': 2, '4_clus__sremove_stab': [0, 0.01, 0.03, 0.1, 0.25], '4_clus__smetric': 'euclidean', '4_clus__srandom_state': None} ================================ ----------- Scores ----------- 4_clus__nb_clust_0 : 8.0000 4_clus__silhouette_0 : 0.0979 4_clus__avg_word_couv_0 : 0.6286 4_clus__med_word_couv_0 : 0.6259 4_clus__avg_word_couv_minus_0 : 0.5985 4_clus__big_small_ratio_0 : 18.0423 4_clus__stab_clus_0 : 0.0105 4_clus__nb_clust_1 : 24.0000 4_clus__silhouette_1 : 0.1217 4_clus__avg_word_couv_1 : 0.5620 4_clus__med_word_couv_1 : 0.5542 4_clus__avg_word_couv_minus_1 : 0.5339 4_clus__big_small_ratio_1 : 21.4531 4_clus__stab_clus_1 : 0.0042 4_clus__avg_stab_avg : 0.0073 4_clus__avg_couv_avg : 0.5953 4_clus__clu_score : 0.3013 --------- Desc Scores --------- 4_clus__clus_eval_pos_0_det 0 query, humanities social sciences : s 603 stb ... 1 logic science, semantics : s 270 stb 0.10 + 0.... 2 neural networks, challenge : s 224 stb 0.00 + ... 3 biology, biological : s 185 stb 0.00 + 0.54 - ... 4 networking internet architecture, stabilizing ... 5 compiler, parallelism : s 153 stb 0.00 + 0.60 ... 6 creative, movement : s 145 stb 0.00 + 0.44 - 0.01 7 secondary structure, quantitative methods : s ... 8 vertices, minimum : s 131 stb 0.00 + 0.68 - 0.02 9 fluid, dynamics : s 126 stb 0.00 + 0.68 - 0.05 10 automata, combinatorics : s 124 stb 0.00 + 0.5... 11 visualizations, illustrative : s 120 stb 0.00 ... 12 services, cluster computing : s 117 stb 0.00 +... 13 optimization control, population : s 94 stb 0.... 14 gestures, pointing : s 90 stb 0.00 + 0.52 - 0.01 15 reality, tangible : s 83 stb 0.00 + 0.76 - 0.01 16 operations, stochastic : s 77 stb 0.00 + 0.73 ... 17 monte carlo, games : s 74 stb 0.00 + 0.97 - 0.02 18 adaptive, multi armed : s 71 stb 0.00 + 0.90 -... dtype: object VALUE : 0.6286 4_clus__clus_eval_pos_1_det 0 verification, testing : s 270 stb 0.00 + 0.57 ... 1 statistics, reinforcement learning : s 224 stb... 2 molecular, protein : s 185 stb 0.00 + 0.45 - 0.02 3 networking internet, wireless : s 162 stb 0.00... 4 programming languages, architectures : s 153 s... 5 interfaces, motion : s 145 stb 0.00 + 0.44 - 0.04 6 secondary, sequence : s 132 stb 0.00 + 0.58 - ... 7 discrete mathematics, vertex : s 131 stb 0.00 ... 8 numerical simulations, mechanics : s 126 stb 0... 9 finite, trees : s 124 stb 0.00 + 0.52 - 0.06 10 documents, mining : s 120 stb 0.00 + 0.52 - 0.03 11 information visualization, representations : s... 12 service, fault : s 117 stb 0.00 + 0.68 - 0.04 13 queries, query answers : s 97 stb 0.00 + 0.78 ... 14 evolution strategies, noisy optimization : s 9... 15 corpora, natural language : s 91 stb 0.00 + 0.... 16 spatial, navigation : s 90 stb 0.00 + 0.44 - 0.04 17 virtual, augmented reality : s 83 stb 0.00 + 0... 18 integer, chance constrained : s 77 stb 0.00 + ... 19 monte carlo search, carlo : s 74 stb 0.00 + 0.... 20 social sciences, social networks : s 73 stb 0.... 21 multi armed bandit, multi armed bandits : s 71... 22 image, similarity : s 66 stb 0.00 + 0.83 - 0.03 23 linear systems, matrices : s 64 stb 0.10 + 0.7... dtype: object VALUE : 0.5620 --------- Raw Scores --------- 4_clustering scores: None ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score'] ================================ Run params : {} -------------------------------- Scoring params : {'6_pst__sname_list': ['2_nD__neighbors_articles_authors', '3_2D__neighbors_articles_authors', '4_clus__clu_score']} ================================ ----------- Scores ----------- 6_pst__final_score : 0.3929 --------- Desc Scores --------- 6_pst__final_score_det 0 2_nD__neighbors_articles_authors : 0.48 1 3_2D__neighbors_articles_authors : 0.40 2 4_clus__clu_score : 0.30 dtype: object VALUE : 0.3929 --------- Raw Scores --------- 6_post scores: None Finished running step! <cartodata.model_selection.utils.Results object at 0x7efc8769c490> .. GENERATED FROM PYTHON SOURCE LINES 522-523 We can verify that the experiment is run for 2 new set of parameters: .. GENERATED FROM PYTHON SOURCE LINES 523-528 .. code-block:: Python df = pd.read_csv(TOP_DIR / "experiment.csv", index_col=0) df .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>id</th> <th>robustseed</th> <th>authors__filter_min_score</th> <th>filter_min_score</th> <th>projection_nD</th> <th>projection_2D</th> <th>selected</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>68d289ffd85ae917e710</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>1</th> <td>ce1c0d334fc75a6570a5</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>2</th> <td>a588bce09630b37c4111</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>3</th> <td>06128c38fd13123e263c</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>4</th> <td>1040be9e44c8ab04aa0e</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>5</th> <td>014dbb63a341d2622f25</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>6</th> <td>06a7ca0915d11a6cad00</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>7</th> <td>979bdf3fc81db6766d24</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>True</td> </tr> <tr> <th>8</th> <td>74f9b611573d48c19a8e</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>9</th> <td>c5ec62b56a0c0563c079</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>10</th> <td>b11b71ed11b157e13f95</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>11</th> <td>a7909c645cf88ed5c209</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>12</th> <td>4c16fefcccebf0b96309</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>13</th> <td>97a0b8354402e18fa744</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>14</th> <td>dcfa478890363f0396c3</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>15</th> <td>0070d0c653c88c823b5c</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>16</th> <td>9fd981e9c09b2eed1de6</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>17</th> <td>8ff3e42500d4389f445d</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 50, 'extra_param': ...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>18</th> <td>9bd0b3935ca3e4457d8a</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>19</th> <td>9a6fd2af303ac5430413</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>20</th> <td>151ba7fff2224cb7d57b</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>21</th> <td>45e2d7c0f5ed87a9653b</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>22</th> <td>fb97932fdc7a24071f48</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>23</th> <td>3381a66259bc4e6d8899</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>24</th> <td>5c605c552b449a76cbbf</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>25</th> <td>eae12b9b57e5abbf5b3b</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>26</th> <td>1595a61c3d93a94b121e</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>27</th> <td>d1ced9d06c4ed06937ad</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>28</th> <td>fc5671119a7e46e9b519</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>29</th> <td>c6c7cfaf3dab327815a3</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>30</th> <td>e3c9335d86928f04d986</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>31</th> <td>b2b14d84c6cf741b3f94</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>32</th> <td>e079875025cff951a37d</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>33</th> <td>943a271c14a11b4e5954</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>34</th> <td>fea341b317d4d596ea82</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>35</th> <td>ba4951c2c78e0031fb8e</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'lsa', 'num_dims': 100, 'extra_param':...</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>36</th> <td>939f3d80d6ec35db69f7</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>37</th> <td>18a385a32e9a8250cfda</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>38</th> <td>41f146808f2ef8b013be</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 10, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>39</th> <td>f32ac02bc42412221a98</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>40</th> <td>ed7b6ebc7f1b57baa10c</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>41</th> <td>9616f8655120a922eb8f</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 20, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>42</th> <td>a72244820858b67def57</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>43</th> <td>3ae9168b3636e9c9ab4f</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> <tr> <th>44</th> <td>ec8c846300e8221b9a52</td> <td>0</td> <td>4</td> <td>6</td> <td>{'key': 'bert', 'family': 'all-MiniLM-L6-v2'}</td> <td>{'key': 'umap', 'n_neighbors': 50, 'min_dist':...</td> <td>False</td> </tr> </tbody> </table> </div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 529-530 We can also view the results file: .. GENERATED FROM PYTHON SOURCE LINES 530-539 .. code-block:: Python df = pd.read_csv(TOP_DIR / "scores/final_results.csv", index_col=0) df "" df = pd.read_csv(TOP_DIR / "scores/2_nD__neighbors_articles_authors.csv") df .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Unnamed: 0</th> <th>2_nD__neighbors_articles_authors</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>{'id': '68d289ffd85ae917e710', '2_nD__rkey': '...</td> <td>0.477852</td> </tr> <tr> <th>1</th> <td>{'id': 'ce1c0d334fc75a6570a5', '2_nD__rkey': '...</td> <td>0.477852</td> </tr> <tr> <th>2</th> <td>{'id': 'a588bce09630b37c4111', '2_nD__rkey': '...</td> <td>0.477852</td> </tr> <tr> <th>3</th> <td>{'id': '06128c38fd13123e263c', '2_nD__rkey': '...</td> <td>0.477852</td> </tr> <tr> <th>4</th> <td>{'id': '1040be9e44c8ab04aa0e', '2_nD__rkey': '...</td> <td>0.477852</td> </tr> <tr> <th>5</th> <td>{'id': '014dbb63a341d2622f25', '2_nD__rkey': '...</td> <td>0.477852</td> </tr> <tr> <th>6</th> <td>{'id': '06a7ca0915d11a6cad00', '2_nD__rkey': '...</td> <td>0.477852</td> </tr> <tr> <th>7</th> <td>{'id': '979bdf3fc81db6766d24', '2_nD__rkey': '...</td> <td>0.477852</td> </tr> </tbody> </table> </div> </div> <br /> <br /> .. rst-class:: sphx-glr-timing **Total running time of the script:** (5 minutes 16.483 seconds) .. _sphx_glr_download_auto_examples_experiment_custom_lisn.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: experiment_custom_lisn.ipynb <experiment_custom_lisn.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: experiment_custom_lisn.py <experiment_custom_lisn.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: experiment_custom_lisn.zip <experiment_custom_lisn.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_