.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/pipeline_lisn_lsa_umap_hdbscan_hierarchical.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_auto_examples_pipeline_lisn_lsa_umap_hdbscan_hierarchical.py>` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_pipeline_lisn_lsa_umap_hdbscan_hierarchical.py: Processing LISN data with Pipeline API (LSA projection) ==================================================================== In this example we will process LISN (Laboratoire Interdisciplinaire des Sciences du Numérique) dataset using `Pipeline` API. LISN dataset contains all articles from HAL (https://hal.archives-ouvertes.fr/) published by authors from LISN between 2000-2022. The pipeline will comprise of the following steps: - extract entities (articles, authors, teams, labs, words) from a collection of scientific articles - use Latent Semantic Analysis (LSA) to generate n-dimensional vector representation of the entities - use Uniform Manifold Approximation and Projection (UMAP) to project those entities in 2 dimensions - use HDBScan clustering to cluster entities - find their nearest neighbors. .. GENERATED FROM PYTHON SOURCE LINES 21-27 Create LISN Dataset ==================== We will first create Dataset for LISN. The CSV file containing the data can be downloaded from https://zenodo.org/record/7323538/files/lisn_2000_2022.csv . We will use version 2.0.0 of the dataset. When we specify the URL to `CSVDataset`, it will download the file if it does not exist locally. .. GENERATED FROM PYTHON SOURCE LINES 27-41 .. code-block:: Python from cartodata.pipeline.datasets import CSVDataset # noqa from pathlib import Path # noqa ROOT_DIR = Path.cwd().parent # The directory where files necessary to load dataset columns reside INPUT_DIR = ROOT_DIR / "datas" # The directory where the generated dump files will be saved TOP_DIR = ROOT_DIR / "dumps" dataset = CSVDataset(name="lisn", input_dir=INPUT_DIR, version="2.0.0", filename="lisn_2000_2022.csv", fileurl="https://zenodo.org/record/7323538/files/lisn_2000_2022.csv", columns=None, index_col=0, top_dir=TOP_DIR) .. GENERATED FROM PYTHON SOURCE LINES 42-45 This will check if the dataset file already exists locally. If it does not, it downloads the file from the specified URL and the loads the file to a pandas Dataframe. Let's view the dataset. .. GENERATED FROM PYTHON SOURCE LINES 45-50 .. code-block:: Python df = dataset.df df.head(5) .. rst-class:: sphx-glr-script-out .. code-block:: none Downloading data from https://zenodo.org/records/7323538/files/lisn_2000_2022.csv (6.3 MB) file_sizes: 0%| | 0.00/6.59M [00:00<?, ?B/s] file_sizes: 51%|█████████████▎ | 3.37M/6.59M [00:00<00:00, 33.3MB/s] file_sizes: 100%|██████████████████████████| 6.59M/6.59M [00:00<00:00, 44.1MB/s] Successfully downloaded file to /builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/lisn_2000_2022.csv .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>structId_i</th> <th>authFullName_s</th> <th>en_abstract_s</th> <th>en_keyword_s</th> <th>en_title_s</th> <th>structAcronym_s</th> <th>producedDateY_i</th> <th>producedDateM_i</th> <th>halId_s</th> <th>docid</th> <th>en_domainAllCodeLabel_fs</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>[2544, 92966, 411575, 441569]</td> <td>Frédéric Blanqui</td> <td>In the last twenty years, several approaches t...</td> <td>Higher-order rewriting,Termination,Confluence</td> <td>Termination and Confluence of Higher-Order Rew...</td> <td>LRI,UP11,CNRS,LISN</td> <td>2000</td> <td>7.0</td> <td>inria-00105556</td> <td>105556</td> <td>Logic in Computer Science,Computer Science</td> </tr> <tr> <th>1</th> <td>[2544, 92966, 411575, 441569]</td> <td>Sébastien Tixeuil</td> <td>When a distributed system is subject to transi...</td> <td>Self-stabilization,Distributed Systems,Distrib...</td> <td>Efficient Self-stabilization</td> <td>LRI,UP11,CNRS,LISN</td> <td>2000</td> <td>1.0</td> <td>tel-00124843</td> <td>124843</td> <td>Networking and Internet Architecture,Computer ...</td> </tr> <tr> <th>2</th> <td>[1167, 300340, 301492, 564132, 441569, 2544, 9...</td> <td>Michèle Sebag,Céline Rouveirol</td> <td>One of the obstacles to widely using first-ord...</td> <td>Bounded reasoning,First order logic,Inductive ...</td> <td>Resource-bounded relational reasoning: inducti...</td> <td>LMS,X,PSL,CNRS,LRI,UP11,CNRS,LISN</td> <td>2000</td> <td>NaN</td> <td>hal-00111312</td> <td>2263842</td> <td>Mechanics,Engineering Sciences,physics</td> </tr> <tr> <th>3</th> <td>[994, 15786, 301340, 303171, 441569, 34499, 81...</td> <td>Philippe Balbiani,Jean-François Condotta,Gérar...</td> <td>This paper organizes the topologic forms of th...</td> <td>Temporal reasoning,Constraint handling,Computa...</td> <td>Reasoning about generalized intervals : Horn r...</td> <td>LIPN,UP13,USPC,CNRS,IRIT,UT1,UT2J,UT3,CNRS,Tou...</td> <td>2000</td> <td>NaN</td> <td>hal-03300321</td> <td>3300321</td> <td>Artificial Intelligence,Computer Science</td> </tr> <tr> <th>4</th> <td>[1315, 25027, 59704, 564132, 300009, 441569, 4...</td> <td>Roberto Di Cosmo,Delia Kesner,Emmanuel Polonovski</td> <td>We refine the simulation technique introduced ...</td> <td>Linear logic,Proof nets,Lambda-calculus,Explic...</td> <td>Proof Nets and Explicit Substitutions</td> <td>LIENS,DI-ENS,ENS-PSL,PSL,Inria,CNRS,CNRS,LRI,U...</td> <td>2000</td> <td>NaN</td> <td>hal-00384955</td> <td>384955</td> <td>Logic in Computer Science,Computer Science</td> </tr> </tbody> </table> </div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 51-52 The dataframe that we just read consists of 4262 articles as rows. .. GENERATED FROM PYTHON SOURCE LINES 52-55 .. code-block:: Python df.shape[0] .. rst-class:: sphx-glr-script-out .. code-block:: none 4262 .. GENERATED FROM PYTHON SOURCE LINES 56-57 And their authors, abstract, keywords, title, research labs and domain as columns. .. GENERATED FROM PYTHON SOURCE LINES 57-60 .. code-block:: Python print(*df.columns, sep="\n") .. rst-class:: sphx-glr-script-out .. code-block:: none structId_i authFullName_s en_abstract_s en_keyword_s en_title_s structAcronym_s producedDateY_i producedDateM_i halId_s docid en_domainAllCodeLabel_fs .. GENERATED FROM PYTHON SOURCE LINES 61-82 Now we should define our entities and set the column names corresponding to those entities from the data file. We have 5 entities: | entity | column name in the file | ---------|-------------| | articles | en_title_s | | authors | authFullName_s | | teams | structAcronym_s | | labs | structAcronym_s | | words | en_abstract_s, en_title_s, en_keyword_s, en_domainAllCodeLabel_fs | Cartolabe provides 4 types of columns: - **IdentityColumn**: The entity of this column represents the main entity of the dataset. The column data corresponding to the entity in the file should contain a single value and this value should be unique among column values. There can only be one `IdentityColumn` in the dataset. - **CSColumn**: The entity of this column type is related to the main entity, and can contain single or comma separated values. - **CorpusColumn**: The entity of this column type is the corpus related to the main entity. This can be a combination of multiple columns in the file. It uses a modified version of CountVectorizer(https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer). - **TfidfCorpusColumn**: The entity of this column type is the corpus related to the main entity. This can be a combination of multiple columns in the file or can contain filepath from which to read the text corpus. It uses TfidfVectorizer (https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html). In this dataset, **Articles** is our main entity. We will define it as IdentityColumn: .. GENERATED FROM PYTHON SOURCE LINES 82-87 .. code-block:: Python from cartodata.pipeline.columns import IdentityColumn, CSColumn, CorpusColumn # noqa articles_column = IdentityColumn(nature="articles", column_name="en_title_s") .. GENERATED FROM PYTHON SOURCE LINES 88-89 `authFullName_s` column for entity **authors** in the dataset lists the authors who have authored each article, and has comma separated values. We will define a CSColumn: .. GENERATED FROM PYTHON SOURCE LINES 89-92 .. code-block:: Python authors_column = CSColumn(nature="authors", column_name="authFullName_s", filter_min_score=4) .. GENERATED FROM PYTHON SOURCE LINES 93-98 Here we have set `filter_min_score=4` to indicate that, while processing data, authors who have authored less than 4 articles will be filtered. When it is not set, the default value is `0`, meaning that entities will not be filtered. **Teams** and **Labs** entities both use `structAcronym_s` column which also has comma separated values. `structAcronym_s` column contains both teams and labs of the articles. For teams entity we will take only teams and for labs entity we will take only labs. The file **../datas/inria-teams.csv** contains the list of Inria teams. For teams entity, we will whitelist the values from inria-teams.csv and for labs entity, we will blacklist values from inria-teams.csv. .. GENERATED FROM PYTHON SOURCE LINES 98-105 .. code-block:: Python teams_column = CSColumn(nature="teams", column_name="structAcronym_s", whitelist="inria-teams.csv", filter_min_score=4) labs_column = CSColumn(nature="labs", column_name="structAcronym_s", blacklist="inria-teams.csv", filter_min_score=4) .. GENERATED FROM PYTHON SOURCE LINES 106-107 For **words** entity, we are going to use multiple columns to create a text corpus for each article: .. GENERATED FROM PYTHON SOURCE LINES 107-113 .. code-block:: Python words_column = CorpusColumn(nature="words", column_names=["en_abstract_s", "en_title_s", "en_keyword_s", "en_domainAllCodeLabel_fs"], stopwords="stopwords.txt", nb_grams=4, min_df=10, max_df=0.05, min_word_length=5, normalize=True) .. GENERATED FROM PYTHON SOURCE LINES 114-115 Now we are going to set the columns of the dataset: .. GENERATED FROM PYTHON SOURCE LINES 115-118 .. code-block:: Python dataset.set_columns([articles_column, authors_column, teams_column, labs_column, words_column]) .. GENERATED FROM PYTHON SOURCE LINES 119-127 We can set the columns in any order that we prefer. We will set the first entity as identity entity and the last entity as the corpus. If we set the entities in a different order, the `Dataset` will put the main entity as first. The dataset for LISN data is ready. Now we will create and run our pipeline. For this pipeline, we will: - run LSA projection -> N-dimesional - run UMAP projection -> 2D - cluster entities - find nearest neighbors .. GENERATED FROM PYTHON SOURCE LINES 129-131 Create and run pipeline ======================== .. GENERATED FROM PYTHON SOURCE LINES 133-134 We will first create a pipeline with the dataset. We will set `hierarchical_dirs=True` to save each entity generated in a directory named with the parameters of generation and places in a hierarchy. .. GENERATED FROM PYTHON SOURCE LINES 134-139 .. code-block:: Python from cartodata.pipeline.common import Pipeline # noqa pipeline = Pipeline(dataset=dataset, top_dir=TOP_DIR, input_dir=INPUT_DIR, hierarchical_dirs=True) .. GENERATED FROM PYTHON SOURCE LINES 140-141 The workflow generates the `natures` from dataset columns. .. GENERATED FROM PYTHON SOURCE LINES 141-144 .. code-block:: Python pipeline.natures .. rst-class:: sphx-glr-script-out .. code-block:: none ['articles', 'authors', 'teams', 'labs', 'words'] .. GENERATED FROM PYTHON SOURCE LINES 145-152 Creating correspondance matrices for each entity type ------------------------------------------------------------------------------- From this table of articles, we want to extract matrices that will map the correspondance between these articles and the entities we want to use. Pipeline has `generate_entity_matrices` function to generate matrices and scores for each entity (nature) specified for the dataset. .. GENERATED FROM PYTHON SOURCE LINES 152-155 .. code-block:: Python matrices, scores = pipeline.generate_entity_matrices(force=True) .. GENERATED FROM PYTHON SOURCE LINES 156-157 The order of matrices and scores correspond to the order of dataset columns specified. .. GENERATED FROM PYTHON SOURCE LINES 157-160 .. code-block:: Python dataset.natures .. rst-class:: sphx-glr-script-out .. code-block:: none ['articles', 'authors', 'teams', 'labs', 'words'] .. GENERATED FROM PYTHON SOURCE LINES 161-166 **Articles** The first matrix in matrices and Series in scores corresponds to **articles**. The type for article column is `IdentityColumn`. It generates a matrix that simply maps each article to itself. .. GENERATED FROM PYTHON SOURCE LINES 166-170 .. code-block:: Python articles_mat = matrices[0] articles_mat.shape .. rst-class:: sphx-glr-script-out .. code-block:: none (4262, 4262) .. GENERATED FROM PYTHON SOURCE LINES 171-172 Having type `IdentityColumn`, each article will have score 1. .. GENERATED FROM PYTHON SOURCE LINES 172-179 .. code-block:: Python articles_scores = scores[0] articles_scores.shape "" articles_scores.head() .. rst-class:: sphx-glr-script-out .. code-block:: none Termination and Confluence of Higher-Order Rewrite Systems 1.0 Efficient Self-stabilization 1.0 Resource-bounded relational reasoning: induction and deduction through stochastic matching 1.0 Reasoning about generalized intervals : Horn representability and tractability 1.0 Proof Nets and Explicit Substitutions 1.0 dtype: float64 .. GENERATED FROM PYTHON SOURCE LINES 180-185 **Authors** The second matrix in matrices and score in scores correspond to **authors**. The type for authors column is `CSColumn`. It generates a sparce matrix where rows correspond to articles and columns corresponds to authors. .. GENERATED FROM PYTHON SOURCE LINES 185-189 .. code-block:: Python authors_mat = matrices[1] authors_mat.shape .. rst-class:: sphx-glr-script-out .. code-block:: none (4262, 694) .. GENERATED FROM PYTHON SOURCE LINES 190-196 Here we see that after filtering authors which have less than 4 articles, there are 694 distinct authors. The series, which we named `authors_scores`, contains the list of authors extracted from the column `authFullName_s` with a score that is equal to the number of rows (articles) that this value was mapped within the `authors_mat` matrix. .. GENERATED FROM PYTHON SOURCE LINES 196-200 .. code-block:: Python authors_scores = scores[1] authors_scores.head() .. rst-class:: sphx-glr-script-out .. code-block:: none Sébastien Tixeuil 47 Michèle Sebag 137 Khaldoun Al Agha 20 Ralf Treinen 5 Christine Eisenbeis 27 dtype: int64 .. GENERATED FROM PYTHON SOURCE LINES 201-204 If we look at the *4th* column of the matrix, which corresponds to the author **Ralf Treinen**, we can see that it has 5 non-zero rows, each row indicating which articles he authored. .. GENERATED FROM PYTHON SOURCE LINES 204-207 .. code-block:: Python print(authors_mat[:, 3]) .. rst-class:: sphx-glr-script-out .. code-block:: none (6, 0) 1 (21, 0) 1 (37, 0) 1 (2729, 0) 1 (3573, 0) 1 .. GENERATED FROM PYTHON SOURCE LINES 208-213 **Teams** The third matrix in matrices and score in scores correspond to **teams**. The type for teams column is `CSColumn`. It generates a sparce matrix where rows correspond to articles and columns corresponds to teams. .. GENERATED FROM PYTHON SOURCE LINES 213-217 .. code-block:: Python teams_mat = matrices[2] teams_mat.shape .. rst-class:: sphx-glr-script-out .. code-block:: none (4262, 33) .. GENERATED FROM PYTHON SOURCE LINES 218-224 Here we see that after filtering teams which have less than 4 articles, there are 33 distinct teams. The series, which we named `teams_scores`, contains the list of teams extracted from the column `structAcronym_s` with a score that is equal to the number of rows (articles) that this value was mapped within the `teams_mat` matrix. .. GENERATED FROM PYTHON SOURCE LINES 224-228 .. code-block:: Python teams_scores = scores[2] teams_scores.head() .. rst-class:: sphx-glr-script-out .. code-block:: none TAO 533 Regal 10 Parkas 14 DAHU 7 GALLIUM 23 dtype: int64 .. GENERATED FROM PYTHON SOURCE LINES 229-234 **Labs** The fourth matrix in matrices and score in scores correspond to **labs**. The type for labs column is `CSColumn`. It generates a sparce matrix where rows correspond to articles and columns corresponds to labs. .. GENERATED FROM PYTHON SOURCE LINES 234-238 .. code-block:: Python labs_mat = matrices[3] labs_mat.shape .. rst-class:: sphx-glr-script-out .. code-block:: none (4262, 549) .. GENERATED FROM PYTHON SOURCE LINES 239-245 Here we see that after filtering labs which have less than 4 articles, there are 549 distinct labs. The series, which we named `labs_scores`, contains the list of labs extracted from the column `structAcronym_s` with a score that is equal to the number of rows (articles) that this value was mapped within the `labs_mat` matrix. .. GENERATED FROM PYTHON SOURCE LINES 245-249 .. code-block:: Python labs_scores = scores[3] labs_scores.head() .. rst-class:: sphx-glr-script-out .. code-block:: none LRI 4789 UP11 6271 CNRS 10217 LISN 5203 X 487 dtype: int64 .. GENERATED FROM PYTHON SOURCE LINES 250-255 **Words** The fifth matrix in matrices and score in scores correspond to **words**. The type for words column is `CorpusColumn`. It creates a corpus merging multiple text columns in the dataset, and then extracts n-grams from that corpus. Finally it generates a sparce matrix where rows correspond to articles and columns corresponds to n-grams. .. GENERATED FROM PYTHON SOURCE LINES 255-259 .. code-block:: Python words_mat = matrices[4] words_mat.shape .. rst-class:: sphx-glr-script-out .. code-block:: none (4262, 4645) .. GENERATED FROM PYTHON SOURCE LINES 260-265 Here we see that there are 5226 distinct n-grams. The series, which we named `words_scores`, contains the list of n-grams with a score that is equal to the number of rows (articles) that this value was mapped within the `words_mat` matrix. .. GENERATED FROM PYTHON SOURCE LINES 265-269 .. code-block:: Python words_scores = scores[4] words_scores.head() .. rst-class:: sphx-glr-script-out .. code-block:: none abilities 21 ability 164 absence 53 absolute 19 abstract 174 dtype: int64 .. GENERATED FROM PYTHON SOURCE LINES 270-280 Dimension reduction ------------------------------ One way to see the matrices that we created is as coordinates in the space of all articles. What we want to do is to reduce the dimension of this space to make it easier to work with and see. **LSA projection** We'll start by using the LSA (Latent Semantic Analysis) technique to reduce the number of rows in our data. .. GENERATED FROM PYTHON SOURCE LINES 280-289 .. code-block:: Python from cartodata.pipeline.projectionnd import LSAProjection # noqa num_dim = 80 lsa_projection = LSAProjection(num_dim) pipeline.set_projection_nd(lsa_projection) .. GENERATED FROM PYTHON SOURCE LINES 290-291 Now we can run LSA projection on the matrices. .. GENERATED FROM PYTHON SOURCE LINES 291-298 .. code-block:: Python matrices_nD = pipeline.do_projection_nD(force=True) "" for nature, matrix in zip(pipeline.natures, matrices_nD): print(f"{nature} ------------- {matrix.shape}") .. rst-class:: sphx-glr-script-out .. code-block:: none articles ------------- (80, 4262) authors ------------- (80, 694) teams ------------- (80, 33) labs ------------- (80, 549) words ------------- (80, 4645) .. GENERATED FROM PYTHON SOURCE LINES 299-300 We have 80 rows for each entity. .. GENERATED FROM PYTHON SOURCE LINES 302-312 This makes it easier to work with them for clustering or nearest neighbors tasks, but we also want to project them on a 2D space to be able to map them. **UMAP projection** The `UMAP <https://github.com/lmcinnes/umap>`_ (Uniform Manifold Approximation and Projection) is a dimension reduction technique that can be used for visualisation similarly to t-SNE. We use this algorithm to project our matrices in 2 dimensions. .. GENERATED FROM PYTHON SOURCE LINES 312-320 .. code-block:: Python from cartodata.pipeline.projection2d import UMAPProjection # noqa umap_projection = UMAPProjection(n_neighbors=15, min_dist=0.1) pipeline.set_projection_2d(umap_projection) .. GENERATED FROM PYTHON SOURCE LINES 321-322 Now we can run UMAP projection on the LSA matrices. .. GENERATED FROM PYTHON SOURCE LINES 322-325 .. code-block:: Python matrices_2D = pipeline.do_projection_2D(force=True) .. GENERATED FROM PYTHON SOURCE LINES 326-328 Now that we have 2D coordinates for our points, we can try to plot them to get a feel of the data's shape. .. GENERATED FROM PYTHON SOURCE LINES 328-334 .. code-block:: Python labels = tuple(pipeline.natures) colors = ['b', 'r', 'c', 'y', 'm'] fig, ax = pipeline.plot_map(matrices_2D, labels, colors) .. image-sg:: /auto_examples/images/sphx_glr_pipeline_lisn_lsa_umap_hdbscan_hierarchical_001.png :alt: pipeline lisn lsa umap hdbscan hierarchical :srcset: /auto_examples/images/sphx_glr_pipeline_lisn_lsa_umap_hdbscan_hierarchical_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 335-344 The plot above, as we don't have labels for the points, doesn't make much sense as is. But we can see that the data shows some clusters which we could try to identify. Clustering --------------- In order to identify clusters, we use the HDBScan clustering technique on the articles. We'll also try to label these clusters by selecting the most frequent words that appear in each cluster's articles. .. GENERATED FROM PYTHON SOURCE LINES 344-354 .. code-block:: Python from cartodata.pipeline.clustering import HDBSCANClustering # noqa # level of clusters, hl: high level, ml: medium level cluster_natures = ["hl_clusters", "ml_clusters"] hdbscan_clustering = HDBSCANClustering(n=8, base_factor=3, natures=cluster_natures) pipeline.set_clustering(hdbscan_clustering) .. GENERATED FROM PYTHON SOURCE LINES 355-356 Now we can run clustering on the matrices. .. GENERATED FROM PYTHON SOURCE LINES 356-360 .. code-block:: Python (clus_nD, clus_2D, clus_scores, cluster_labels, cluster_eval_pos, cluster_eval_neg) = pipeline.do_clustering() .. rst-class:: sphx-glr-script-out .. code-block:: none Nothing in cache, initial Fitting with min_cluster_size=15 Found 98 clusters in 0.2496061189995089s Max Fitting with min_cluster_size=30 Found 53 clusters in 0.11711032799939858s Max Fitting with min_cluster_size=60 Found 18 clusters in 0.09962272899974778s Max Fitting with min_cluster_size=120 Found 11 clusters in 0.08927081399997405s Max Fitting with min_cluster_size=240 Found 4 clusters in 0.08782700699975976s Midpoint Fitting with min_cluster_size=180 Found 7 clusters in 0.09113641800013284s Midpoint Fitting with min_cluster_size=150 Found 8 clusters in 0.09223331199973472s No need Re-Fitting with min_cluster_size=150 Clusters cached: [4, 7, 8, 11, 18, 53, 98] Nothing in cache, initial Fitting with min_cluster_size=15 Found 98 clusters in 0.10032779599987407s Max Fitting with min_cluster_size=30 Found 53 clusters in 0.09995358900050633s Max Fitting with min_cluster_size=60 Found 18 clusters in 0.098051748999751s Midpoint Fitting with min_cluster_size=45 Found 28 clusters in 0.09810328700041282s Midpoint Fitting with min_cluster_size=52 Found 18 clusters in 0.09916086700013693s Re-Fitting with min_cluster_size=45 Found 28 clusters in 0.09848179599975992s Clusters cached: [18, 18, 28, 53, 98] .. GENERATED FROM PYTHON SOURCE LINES 361-362 As we have specified two levels of clustering, the returned lists wil have two values. .. GENERATED FROM PYTHON SOURCE LINES 362-365 .. code-block:: Python len(clus_2D) .. rst-class:: sphx-glr-script-out .. code-block:: none 2 .. GENERATED FROM PYTHON SOURCE LINES 366-367 We will now display two levels of clusters in separate plots, we will start with high level clusters: .. GENERATED FROM PYTHON SOURCE LINES 367-376 .. code-block:: Python clus_scores_hl = clus_scores[0] clus_mat_hl = clus_2D[0] fig_hl, ax_hl = pipeline.plot_map(matrices_2D, labels, colors, title="LISN Dataset High Level Clusters", annotations=clus_scores_hl.index, annotation_mat=clus_mat_hl) .. image-sg:: /auto_examples/images/sphx_glr_pipeline_lisn_lsa_umap_hdbscan_hierarchical_002.png :alt: LISN Dataset High Level Clusters :srcset: /auto_examples/images/sphx_glr_pipeline_lisn_lsa_umap_hdbscan_hierarchical_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 377-381 The 8 high level clusters that we created give us a general idea of what the big clusters of data contain. With medium level clusters we have a finer level of detail: .. GENERATED FROM PYTHON SOURCE LINES 381-390 .. code-block:: Python clus_scores_ml = clus_scores[1] clus_mat_ml = clus_2D[1] fig_ml, ax_ml = pipeline.plot_map(matrices_2D, labels, colors, title="LISN Dataset Medium Level Clusters", annotations=clus_scores_ml.index, annotation_mat=clus_mat_ml, annotation_color='black') .. image-sg:: /auto_examples/images/sphx_glr_pipeline_lisn_lsa_umap_hdbscan_hierarchical_003.png :alt: LISN Dataset Medium Level Clusters :srcset: /auto_examples/images/sphx_glr_pipeline_lisn_lsa_umap_hdbscan_hierarchical_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 391-394 We have 24 medium level clusters. We can increase the number of clusters to have even finer details to zoom in and focus on smaller areas. Now we will save the plots in the `working_dir` directory. .. GENERATED FROM PYTHON SOURCE LINES 394-397 .. code-block:: Python pipeline.save_plots() .. rst-class:: sphx-glr-script-out .. code-block:: none [(<Figure size 960x640 with 1 Axes>, 'lisn_2.0.0_15d3d1d060e5f28d_lsa_80_True_umap_euclidean_15_0.1_random_1.0_None_None_hdbscan_hl_clusters.png'), (<Figure size 960x640 with 1 Axes>, 'lisn_2.0.0_15d3d1d060e5f28d_lsa_80_True_umap_euclidean_15_0.1_random_1.0_None_None_hdbscan_ml_clusters.png')] .. GENERATED FROM PYTHON SOURCE LINES 398-399 The plots for 2D map is saved under pipeline 2D directory. .. GENERATED FROM PYTHON SOURCE LINES 399-403 .. code-block:: Python for file in pipeline.get_2D_dir().glob("*.png"): print(file) .. rst-class:: sphx-glr-script-out .. code-block:: none /builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/mat_articles__authors_4_teams_4_labs_4_words_en_abstract_s_en_title_s_en_keyword_s_en_domainAllCodeLabel_fs_10_0.05_None_None_5_4/lsa_80_True/umap_euclidean_15_0.1_random_1.0_None_None/lisn_2.0.0_15d3d1d060e5f28d_lsa_80_True_umap_euclidean_15_0.1_random_1.0_None_None.png .. GENERATED FROM PYTHON SOURCE LINES 404-405 The plots for 2D map with clustering is saved under pipeline cluster directory. .. GENERATED FROM PYTHON SOURCE LINES 405-409 .. code-block:: Python for file in pipeline.get_clus_dir().glob("*.png"): print(file) .. rst-class:: sphx-glr-script-out .. code-block:: none /builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/mat_articles__authors_4_teams_4_labs_4_words_en_abstract_s_en_title_s_en_keyword_s_en_domainAllCodeLabel_fs_10_0.05_None_None_5_4/lsa_80_True/umap_euclidean_15_0.1_random_1.0_None_None/hdbscan_3/lisn_2.0.0_15d3d1d060e5f28d_lsa_80_True_umap_euclidean_15_0.1_random_1.0_None_None_hdbscan_hl_clusters.png /builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/mat_articles__authors_4_teams_4_labs_4_words_en_abstract_s_en_title_s_en_keyword_s_en_domainAllCodeLabel_fs_10_0.05_None_None_5_4/lsa_80_True/umap_euclidean_15_0.1_random_1.0_None_None/hdbscan_3/lisn_2.0.0_15d3d1d060e5f28d_lsa_80_True_umap_euclidean_15_0.1_random_1.0_None_None_hdbscan_ml_clusters.png .. GENERATED FROM PYTHON SOURCE LINES 410-424 Nearest neighbors ---------------------------- One more thing which could be useful to appreciate the quality of our data would be to get each point's nearest neighbors. If our data processing is done correctly, we expect the related articles, labs, words and authors to be located close to each other. Finding nearest neighbors is a common task with various algorithms aiming to solve it. The `find_neighbors` method uses one of these algorithms to find the nearest points of all entities (articles, authors, teams, labs, words). It takes an optional weight parameter to tweak the distance calculation to select points that have a higher score but are maybe a bit farther instead of just selecting the closest neighbors. .. GENERATED FROM PYTHON SOURCE LINES 424-437 .. code-block:: Python from cartodata.pipeline.neighbors import AllNeighbors n_neighbors = 10 weights = [0, 0.5, 0.5, 0, 0] neighboring = AllNeighbors(n_neighbors=n_neighbors, power_scores=weights) pipeline.set_neighboring(neighboring) pipeline.find_neighbors() .. GENERATED FROM PYTHON SOURCE LINES 438-462 Export file using exporter =========================== We can now export the data. To export the data, we need to configure the exporter. The exported data will be the points extracted from the dataset corresponding to the entities that we have defined. In the export file, we will have the following columns for each point: | column | value | ---------|-------------| | nature | one of articles, authors, teams, labs, words | | label | point's label | | score | point's score | | rank | point's rank | | x | point's x location on the map | | y | point's y location on the map | | nn_articles | neighboring articles to this point | | nn_teams | neighboring teams to this point | | nn_labs | neighboring labs to this point | | nn_words | neighboring words to this point | we will call `pipeline.export` function. It will create `export.feather` file and save under `pipeline.working_dir`. .. GENERATED FROM PYTHON SOURCE LINES 462-465 .. code-block:: Python pipeline.export() .. GENERATED FROM PYTHON SOURCE LINES 466-467 Let's display the contents of the file. The file is saved under the pipeline cluster directory. .. GENERATED FROM PYTHON SOURCE LINES 467-473 .. code-block:: Python import pandas as pd # noqa df = pd.read_feather(pipeline.get_clus_dir() / "export.feather") df.head() .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>nature</th> <th>label</th> <th>score</th> <th>rank</th> <th>x</th> <th>y</th> <th>nn_articles</th> <th>nn_authors</th> <th>nn_teams</th> <th>nn_labs</th> <th>nn_words</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>articles</td> <td>Termination and Confluence of Higher-Order Rew...</td> <td>1.0</td> <td>0</td> <td>9.309070</td> <td>6.332092</td> <td>0,30,2057,15,17,13,18,432,41,815</td> <td>4329,4273,4368,4540,4543,4541,4374,4310,4295,4673</td> <td>4956,4964,4974,4963,4982,4960,4969,4977,4966,4961</td> <td>5137,5189,5397,5118,5439,5214,5537,5506,5033,5112</td> <td>8544,7461,9230,9812,9231,7610,9967,6031,7459,6261</td> </tr> <tr> <th>1</th> <td>articles</td> <td>Efficient Self-stabilization</td> <td>1.0</td> <td>1</td> <td>7.495029</td> <td>1.892885</td> <td>1,358,22,233,409,60,878,1941,34,212</td> <td>4271,4262,4385,4389,4273,4303,4282,4538,4408,4402</td> <td>4956,4964,4963,4974,4957,4982,4977,4969,4960,4958</td> <td>5024,5113,5106,5439,5012,5190,5031,5041,5077,5200</td> <td>9579,9580,9991,6775,9916,6776,9581,6953,9163,8575</td> </tr> <tr> <th>2</th> <td>articles</td> <td>Resource-bounded relational reasoning: inducti...</td> <td>1.0</td> <td>2</td> <td>8.351049</td> <td>8.060863</td> <td>2,196,2615,2248,3961,134,1050,1463,2423,580</td> <td>4437,4345,4368,4680,4411,4603,4722,4480,4310,4684</td> <td>4956,4964,4963,4974,4969,4960,4977,4966,4962,4961</td> <td>5289,5183,5358,5406,5137,5479,5144,5153,5397,5306</td> <td>7945,7620,7610,8431,8999,5768,6247,6087,7621,9269</td> </tr> <tr> <th>3</th> <td>articles</td> <td>Reasoning about generalized intervals : Horn r...</td> <td>1.0</td> <td>3</td> <td>8.333518</td> <td>0.076816</td> <td>3,1597,2995,2988,1505,2529,2884,1909,1934,3352</td> <td>4657,4323,4480,4520,4815,4357,4374,4266,4757,4537</td> <td>4956,4964,4963,4974,4982,4969,4977,4966,4960,4962</td> <td>5119,5351,5386,5120,4997,5003,5185,4995,5121,5531</td> <td>5670,5672,6228,7414,6480,8672,9238,9688,7609,7752</td> </tr> <tr> <th>4</th> <td>articles</td> <td>Proof Nets and Explicit Substitutions</td> <td>1.0</td> <td>4</td> <td>9.304070</td> <td>6.326972</td> <td>4,15,17,2049,2909,30,41,1996,18,2545</td> <td>4673,4433,4541,4333,4430,4540,4371,4543,4679,4429</td> <td>4956,4964,4963,4974,4982,4960,4969,4977,4961,4958</td> <td>5137,5397,5479,5118,5006,5406,5189,5400,5007,5291</td> <td>6031,9967,9812,7826,8646,7461,7610,6570,6395,8645</td> </tr> </tbody> </table> </div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 474-477 This is a basic export file. For each point, we can add additional columns. For example, for each author, we can add **labs** and **teams** columns to list the labs and teams that the author belongs to. We can also merge the teams and labs in one column and name it as labs. To do that we have to first create export config for the entity (nature) that we would like to modify. .. GENERATED FROM PYTHON SOURCE LINES 477-487 .. code-block:: Python from cartodata.pipeline.exporting import ( ExportNature, MetadataColumn ) # noqa ex_author = ExportNature(key="authors", refs=["labs", "teams"], merge_metadata=[{"columns": ["teams", "labs"], "as_column": "labs"}]) .. GENERATED FROM PYTHON SOURCE LINES 488-491 We can do the same for articles. Each article will have **teams** and **labs** data, and additionally **author** of the article. So we can set `refs=["labs", "teams", "authors"]`. The original dataset contains a column `producedDateY_i` which contains the year that the article is published. We can add this data as metadata for the point but updating column name with a more clear alternative `year`. We can also add a function to apply to the column value. In this example we will convert column value to string. .. GENERATED FROM PYTHON SOURCE LINES 491-495 .. code-block:: Python meta_year_article = MetadataColumn(column="producedDateY_i", as_column="year", func="x.astype(str)") .. GENERATED FROM PYTHON SOURCE LINES 496-497 We will also add `halId_s` column as `url` and set empty string if the value does not exist: .. GENERATED FROM PYTHON SOURCE LINES 497-508 .. code-block:: Python meta_url_article = MetadataColumn(column="halId_s", as_column="url", func="x.fillna('')") "" ex_article = ExportNature(key="articles", refs=["labs", "teams", "authors"], merge_metadata=[{"columns": ["teams", "labs"], "as_column": "labs"}], add_metadata=[meta_year_article, meta_url_article]) pipeline.export(export_natures=[ex_article, ex_author]) .. GENERATED FROM PYTHON SOURCE LINES 509-510 Now we can load the new `export.feather` file to see the difference. .. GENERATED FROM PYTHON SOURCE LINES 510-515 .. code-block:: Python df = pd.read_feather(pipeline.get_clus_dir()/ "export.feather") df.head() .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>nature</th> <th>label</th> <th>score</th> <th>rank</th> <th>x</th> <th>y</th> <th>nn_articles</th> <th>nn_authors</th> <th>nn_teams</th> <th>nn_labs</th> <th>nn_words</th> <th>labs</th> <th>authors</th> <th>year</th> <th>url</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>articles</td> <td>Termination and Confluence of Higher-Order Rew...</td> <td>1.0</td> <td>0</td> <td>9.309070</td> <td>6.332092</td> <td>0,30,2057,15,17,13,18,432,41,815</td> <td>4329,4273,4368,4540,4543,4541,4374,4310,4295,4673</td> <td>4956,4964,4974,4963,4982,4960,4969,4977,4966,4961</td> <td>5137,5189,5397,5118,5439,5214,5537,5506,5033,5112</td> <td>8544,7461,9230,9812,9231,7610,9967,6031,7459,6261</td> <td>,4992,4991,4990,4989</td> <td></td> <td>2000</td> <td>inria-00105556</td> </tr> <tr> <th>1</th> <td>articles</td> <td>Efficient Self-stabilization</td> <td>1.0</td> <td>1</td> <td>7.495029</td> <td>1.892885</td> <td>1,358,22,233,409,60,878,1941,34,212</td> <td>4271,4262,4385,4389,4273,4303,4282,4538,4408,4402</td> <td>4956,4964,4963,4974,4957,4982,4977,4969,4960,4958</td> <td>5024,5113,5106,5439,5012,5190,5031,5041,5077,5200</td> <td>9579,9580,9991,6775,9916,6776,9581,6953,9163,8575</td> <td>,4992,4991,4990,4989</td> <td>4262</td> <td>2000</td> <td>tel-00124843</td> </tr> <tr> <th>2</th> <td>articles</td> <td>Resource-bounded relational reasoning: inducti...</td> <td>1.0</td> <td>2</td> <td>8.351049</td> <td>8.060863</td> <td>2,196,2615,2248,3961,134,1050,1463,2423,580</td> <td>4437,4345,4368,4680,4411,4603,4722,4480,4310,4684</td> <td>4956,4964,4963,4974,4969,4960,4977,4966,4962,4961</td> <td>5289,5183,5358,5406,5137,5479,5144,5153,5397,5306</td> <td>7945,7620,7610,8431,8999,5768,6247,6087,7621,9269</td> <td>,4992,4990,4989,4991,4994,4993</td> <td>4263</td> <td>2000</td> <td>hal-00111312</td> </tr> <tr> <th>3</th> <td>articles</td> <td>Reasoning about generalized intervals : Horn r...</td> <td>1.0</td> <td>3</td> <td>8.333518</td> <td>0.076816</td> <td>3,1597,2995,2988,1505,2529,2884,1909,1934,3352</td> <td>4657,4323,4480,4520,4815,4357,4374,4266,4757,4537</td> <td>4956,4964,4963,4974,4982,4969,4977,4966,4960,4962</td> <td>5119,5351,5386,5120,4997,5003,5185,4995,5121,5531</td> <td>5670,5672,6228,7414,6480,8672,9238,9688,7609,7752</td> <td>,4992,5005,5004,5003,5002,5001,5000,4999,4998,...</td> <td></td> <td>2000</td> <td>hal-03300321</td> </tr> <tr> <th>4</th> <td>articles</td> <td>Proof Nets and Explicit Substitutions</td> <td>1.0</td> <td>4</td> <td>9.304070</td> <td>6.326972</td> <td>4,15,17,2049,2909,30,41,1996,18,2545</td> <td>4673,4433,4541,4333,4430,4540,4371,4543,4679,4429</td> <td>4956,4964,4963,4974,4982,4960,4969,4977,4961,4958</td> <td>5137,5397,5479,5118,5006,5406,5189,5400,5007,5291</td> <td>6031,9967,9812,7826,8646,7461,7610,6570,6395,8645</td> <td>,4992,4990,4989,4991,5008,4994,5007,5006</td> <td></td> <td>2000</td> <td>hal-00384955</td> </tr> </tbody> </table> </div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 516-519 For the points of nature **articles**, we have additional **labs**, **authors**, **year**, **url** columns. Let's see the points of nature **authors**: .. GENERATED FROM PYTHON SOURCE LINES 519-522 .. code-block:: Python df[df["nature"] == "authors"].head() .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>nature</th> <th>label</th> <th>score</th> <th>rank</th> <th>x</th> <th>y</th> <th>nn_articles</th> <th>nn_authors</th> <th>nn_teams</th> <th>nn_labs</th> <th>nn_words</th> <th>labs</th> <th>authors</th> <th>year</th> <th>url</th> </tr> </thead> <tbody> <tr> <th>4262</th> <td>authors</td> <td>Sébastien Tixeuil</td> <td>47.0</td> <td>4262</td> <td>9.475885</td> <td>-4.045297</td> <td>1332,1944,683,237,1717,282,1600,2373,2449,2075</td> <td>4262,4408,4375,4274,4275,4721,4397,4745,4858,4273</td> <td>4957,4956,4964,4960,4963,4974,4982,4969,4977,4962</td> <td>5200,5031,5179,5032,5384,5320,5319,5449,5468,5456</td> <td>6023,7554,7332,7555,8341,9243,8125,9756,6776,9744</td> <td>4957,4960,4989,4990,4991,4992,5008,5012,5021,5...</td> <td>None</td> <td>None</td> <td>None</td> </tr> <tr> <th>4263</th> <td>authors</td> <td>Michèle Sebag</td> <td>137.0</td> <td>4263</td> <td>3.732471</td> <td>4.000053</td> <td>2523,1861,2292,3316,641,2612,892,853,4241,782</td> <td>4263,4293,4411,4341,4706,4315,4273,4480,4449,4483</td> <td>4956,4964,4963,4974,4982,4969,4962,4977,4966,4960</td> <td>5216,5288,5432,5029,5523,4990,5307,5049,5208,4989</td> <td>9228,6895,6237,6899,8074,7104,7869,9229,7100,8851</td> <td>4956,4964,4972,4989,4990,4991,4992,4993,4994,4...</td> <td>None</td> <td>None</td> <td>None</td> </tr> <tr> <th>4264</th> <td>authors</td> <td>Khaldoun Al Agha</td> <td>20.0</td> <td>4264</td> <td>6.910202</td> <td>2.698025</td> <td>3434,2475,2773,2878,562,1389,474,2879,573,1366</td> <td>4264,4419,4783,4400,4547,4546,4691,4262,4273,4402</td> <td>4965,4956,4964,4963,4974,4982,4969,4977,4960,4962</td> <td>5410,5009,5113,5213,5077,5194,5305,5298,5361,5285</td> <td>10156,10155,10157,8263,7906,8483,9281,8482,996...</td> <td>4965,4989,4990,4991,4992,4993,5000,5008,5009,5...</td> <td>None</td> <td>None</td> <td>None</td> </tr> <tr> <th>4265</th> <td>authors</td> <td>Ralf Treinen</td> <td>5.0</td> <td>4265</td> <td>7.944470</td> <td>-0.504129</td> <td>191,6,192,1438,21,3108,277,2307,2072,831</td> <td>4265,4299,4603,4329,4292,4300,4466,4746,4368,4353</td> <td>4956,4964,4963,4974,4982,4977,4966,4969,4960,4962</td> <td>5047,5010,5044,5134,5088,5232,5105,5098,5152,5137</td> <td>5871,6547,6068,7245,7246,7247,7833,7834,5873,6955</td> <td>4974,4989,4990,4991,4992,4994,5006,5007,5008,5...</td> <td>None</td> <td>None</td> <td>None</td> </tr> <tr> <th>4266</th> <td>authors</td> <td>Christine Eisenbeis</td> <td>27.0</td> <td>4266</td> <td>2.767531</td> <td>2.531678</td> <td>1149,1025,1414,1384,638,527,1171,65,338,899</td> <td>4266,4505,4278,4329,4267,4303,4644,4273,4400,4766</td> <td>4956,4964,4963,4974,4982,4958,4977,4969,4960,4973</td> <td>5314,5162,5260,5133,5309,5219,5040,5027,5393,5382</td> <td>9716,6160,8678,7678,6159,6219,7676,9907,7387,8887</td> <td>4958,4989,4990,4991,4992,4994,4996,5006,5007,5...</td> <td>None</td> <td>None</td> <td>None</td> </tr> </tbody> </table> </div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 523-526 We have values for labs field, but not for authors, year, or url field. As we have not defined any relation for points of natures **teams**, **labs** and **words**, these new columns are empty for those points. .. GENERATED FROM PYTHON SOURCE LINES 526-538 .. code-block:: Python df[df["nature"] == "teams"].head() "" df[df["nature"] == "labs"].head() "" df[df["nature"] == "words"].head() "" df['x'][1] .. rst-class:: sphx-glr-script-out .. code-block:: none 7.495028972625732 .. GENERATED FROM PYTHON SOURCE LINES 539-541 Hierarchical Directory Structure ================================= .. GENERATED FROM PYTHON SOURCE LINES 543-546 It is possible to save the files generated by pipeline in a hierarchical directory structure. The advantage for this is to be able to use the same matrices whenever the parameters are the same, and regenerate new ones, once there is a change of parameters in a particular step. The previous processing will not be deleted, and it will enable us to compare the results of multiple runs on the same dataset with different parameters. `pipeline.working_dir` is the top directory that for a processing. It is named with dataset column parameters. The entity matrices and all following processing artifacts are saved under this directory. .. GENERATED FROM PYTHON SOURCE LINES 546-549 .. code-block:: Python pipeline.working_dir .. rst-class:: sphx-glr-script-out .. code-block:: none PosixPath('/builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/mat_articles__authors_4_teams_4_labs_4_words_en_abstract_s_en_title_s_en_keyword_s_en_domainAllCodeLabel_fs_10_0.05_None_None_5_4') .. GENERATED FROM PYTHON SOURCE LINES 550-551 nD processing dumps are saved under `pipeline.working_dir / nD_dir`. .. GENERATED FROM PYTHON SOURCE LINES 551-554 .. code-block:: Python pipeline.get_nD_dir() .. rst-class:: sphx-glr-script-out .. code-block:: none PosixPath('/builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/mat_articles__authors_4_teams_4_labs_4_words_en_abstract_s_en_title_s_en_keyword_s_en_domainAllCodeLabel_fs_10_0.05_None_None_5_4/lsa_80_True') .. GENERATED FROM PYTHON SOURCE LINES 555-556 2D processing dumps are saved under `pipeline.working_dir / nD_dir / 2D_dir`. .. GENERATED FROM PYTHON SOURCE LINES 556-559 .. code-block:: Python pipeline.get_2D_dir() .. rst-class:: sphx-glr-script-out .. code-block:: none PosixPath('/builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/mat_articles__authors_4_teams_4_labs_4_words_en_abstract_s_en_title_s_en_keyword_s_en_domainAllCodeLabel_fs_10_0.05_None_None_5_4/lsa_80_True/umap_euclidean_15_0.1_random_1.0_None_None') .. GENERATED FROM PYTHON SOURCE LINES 560-561 Clustering dumps are saved under `pipeline.working_dir / nD_dir / 2D_dir/ clus_dir`. .. GENERATED FROM PYTHON SOURCE LINES 561-564 .. code-block:: Python pipeline.get_clus_dir() .. rst-class:: sphx-glr-script-out .. code-block:: none PosixPath('/builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/mat_articles__authors_4_teams_4_labs_4_words_en_abstract_s_en_title_s_en_keyword_s_en_domainAllCodeLabel_fs_10_0.05_None_None_5_4/lsa_80_True/umap_euclidean_15_0.1_random_1.0_None_None/hdbscan_3') .. GENERATED FROM PYTHON SOURCE LINES 565-566 Neighboring dumps are saved under `pipeline.working_dir / nD_dir / 2D_dir/ neigbors_dir`. .. GENERATED FROM PYTHON SOURCE LINES 566-569 .. code-block:: Python pipeline.get_neighbors_dir() .. rst-class:: sphx-glr-script-out .. code-block:: none PosixPath('/builds/2mk6rsew/0/hgozukan/cartolabe-data/dumps/lisn/2.0.0/mat_articles__authors_4_teams_4_labs_4_words_en_abstract_s_en_title_s_en_keyword_s_en_domainAllCodeLabel_fs_10_0.05_None_None_5_4/lsa_80_True/neighbors_10_0_0.5_0.5_0_0') .. GENERATED FROM PYTHON SOURCE LINES 570-571 Let's assume that we want to run UMAP with different parameters. .. GENERATED FROM PYTHON SOURCE LINES 571-584 .. code-block:: Python from cartodata.pipeline.projection2d import UMAPProjection # noqa umap_projection = UMAPProjection(n_neighbors=30, min_dist=0.3) pipeline.set_projection_2d(umap_projection) matrices_2D = pipeline.do_projection_2D() labels = tuple(pipeline.natures) colors = ['b', 'r', 'c', 'y', 'm'] fig, ax = pipeline.plot_map(matrices_2D, labels, colors) .. image-sg:: /auto_examples/images/sphx_glr_pipeline_lisn_lsa_umap_hdbscan_hierarchical_004.png :alt: pipeline lisn lsa umap hdbscan hierarchical :srcset: /auto_examples/images/sphx_glr_pipeline_lisn_lsa_umap_hdbscan_hierarchical_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 585-586 If we list the contents of nD directory, we will see two directories for umap projection. .. GENERATED FROM PYTHON SOURCE LINES 586-591 .. code-block:: Python dir_nD = pipeline.get_nD_dir() "" # !ls $dir_nD .. rst-class:: sphx-glr-script-out .. code-block:: none '' .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 47.179 seconds) .. _sphx_glr_download_auto_examples_pipeline_lisn_lsa_umap_hdbscan_hierarchical.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: pipeline_lisn_lsa_umap_hdbscan_hierarchical.ipynb <pipeline_lisn_lsa_umap_hdbscan_hierarchical.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: pipeline_lisn_lsa_umap_hdbscan_hierarchical.py <pipeline_lisn_lsa_umap_hdbscan_hierarchical.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: pipeline_lisn_lsa_umap_hdbscan_hierarchical.zip <pipeline_lisn_lsa_umap_hdbscan_hierarchical.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_